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Rudin-like sets and hereditary families of compact sets

by

Étienne Matheron (Bordeaux) and Miroslav Zelený (Praha)

Abstract. We show that a comeager Π1
1 hereditary family of compact sets must have

a dense Gδ subfamily which is also hereditary. Using this, we prove an “abstract” result
which implies the existence of independent M0-sets, the meagerness of U0-sets with the
property of Baire, and generalizations of some classical results of Mycielski. Finally, we
also give some natural examples of true Fσδ sets.

1. Introduction. A complex Borel measure on the circle group T is said
to be a Rajchman measure if its Fourier transform vanishes at infinity.
A set A ⊂ T is called a U0-set if µ(A) = 0 for all positive Rajchman
measures µ; otherwise, A is an M0-set. These notions make sense in any
nondiscrete (Hausdorff) locally compact abelian group G.

It has been proved by Rudin ([R]) that there exist compact M0-sets
which are linearly independent over the rationals; since then, independent
M0-sets are called Rudin sets. Later on, Debs and Saint Raymond ([DStR],
see also [KL]) solved the longstanding “category problem” for U0-sets: any
U0-set with the property of Baire is meager in T; equivalently, any nonmeager
Gδ set contains a compact M0-set. Both results assert that some family of
“small” compact sets contains an M0-set, but the formal analogy is in fact
much stronger. Indeed, the families of small compact sets involved, namely
the family of compact independent sets and the family of all compact subsets
of some fixed nonmeager Gδ set, are both nonmeager in the hyperspace
K(T), and both “determined by their finite members”, which means that a
compact set belongs to either family if and only if all its finite subsets do.
In this paper, we stress this analogy by proving an abstract theorem that
generalizes both results (Theorem 4.1). Roughly speaking, it says that if B is
a family of probability measures on some Polish space X which “looks like”
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the family of Rajchman measures, then any coanalytic nonmeager family of
compact subsets of X determined by its finite members must contain a set
supporting some measure from B.

The other main result of the paper (Theorem 2.2) is a general statement
concerning hereditary families of compact sets. This result asserts that a
comeager coanalytic family of compact sets which is hereditary for inclu-
sion must contain a dense Gδ subfamily which is also hereditary. It follows
(Corollary 2.10) that if I is a hereditary coanalytic nonmeager subfamily of
K(X), where X is some Polish space, then I contains a Gδ hereditary set
G which is dense in K(U), for some nonempty open set U ⊂ X. This result
is needed in the proof of Theorem 4.1. More importantly, we believe that it
can be useful in various situations.

The paper is organized as follows. Section 2 is devoted to the proof of
Theorem 2.2. In Section 3, we introduce the instrumental notion of nicely
presented Fσδ families of measures (those which “look like” the family of
Rajchman measures) and give some examples. In Section 4, we prove Theo-
rem 4.1 and give some consequences; these include Rudin’s and Debs–Saint
Raymond’s results as well as generalizations of some classical results of My-
cielski ([My]). Finally, using some of the previous ideas, we give some natural
examples of true Fσδ sets.

We now fix the notation and “background” material that will be used
throughout the paper. All this material (and much more) can be found
in [K1].

If X is a Polish space (that is, a separable, completely metrizable topo-
logical space), we denote by M(X) the family of all complex Borel measures
on X, and by P(X) the family of all Borel probability measures on X. On
M(X), and hence on P(X), two natural topologies are available. First, one
can define the norm of a measure µ ∈ M(X) by ‖µ‖ = |µ|(X), where |µ|
is the total variation of µ, and consider the norm topology on M(X). A
more useful topology is the so-called Prokhorov topology, the weak topology
induced by the bounded continuous functions on X. Thus, a basic neighbor-
hood of some measure µ0 ∈M(X) has the form

U =
{
µ ∈M(X);

∣∣∣
�
fi dµ−

�
fi dµ0

∣∣∣ < ε, i = 1, . . . , N
}
,

where f1, . . . , fN are bounded continuous functions on X and ε is a positive
number. It is well known that P(X) is Polish in the Prokhorov topology,
while the norm topology is obviously not separable if X is uncountable. In
this paper, unless the norm is explicitly mentioned, all topological notions
concerning M(X) or P(X) will refer to the Prokhorov topology. A subset B
of M(X) or P(X) is said to be hereditary if it is downward closed under ab-
solute continuity. For example, it is well known (and easy to prove) that the
family of Rajchman measures on a nondiscrete LCA group G is hereditary.
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If X is a Polish space, we denote by K(X) the space of all compact
subsets of X, equipped with the Vietoris topology. Recall that this topology
is generated by all sets of the form {K ∈ K(X); K ∩ U 6= ∅} and {K ∈
K(X); K ⊂ U}, where U is open in X, and that it is a Polish topology. A set
I ⊂ K(X) is said to be hereditary if it is downward closed under inclusion.
For example, for any set A ⊂ X, the set K(A) := {K ∈ K(X); K ⊂ A} is
hereditary.

As a rule, we will use the now standard notation for Borel and projective
classes; thus, for example, the symbols “Π0

3”, “Σ1
1”, and “Π1

1” mean “Fσδ”,
“analytic”, and “coanalytic” respectively. However, we also use the classical
notations “Fσ” and “Gδ” when they seem to be more suggestive. Finally, we
denote by N the set of nonnegative integers, and by N∗ the set of positive
integers.

2. Comeager hereditary families of compact sets. In this section,
X is a Polish space. We shall say that a set I ⊂ K(X) is big if I contains
a dense Gδ hereditary set. This notion was instrumental in [M1], where the
following question was raised.

Problem 2.1. Is every comeager hereditary set I ⊂ K(X) necessarily
big?

No definability assumption is made here on the set I, but one can observe
that a positive answer to 2.1 for Σ1

1 sets would yield a positive answer for
all comeager hereditary sets I. Indeed, if I ⊂ K(X) is comeager, then I
contains a dense Gδ set H. Let H∗ be the hereditary closure of H, i.e.,

H∗ = {K ∈ K(X); ∃L ∈ H : K ⊂ L}.
The set H∗ is hereditary, it is comeager since H ⊂ H∗, and if I is hereditary,
then H∗ ⊂ I. Finally, since the relation “K ⊂ L” is closed in K(X)×K(X),
the set H∗ is also Σ1

1 in K(X). Thus, a positive answer to 2.1 for Σ1
1 sets

implies a full positive answer.
It seems likely that, under some ad hoc set-theoretical assumption, the

answer to this problem is in fact negative. Yet, we do have the following
general positive result.

Theorem 2.2. Every comeager hereditary Π1
1 subset of K(X) is big.

For the proof of Theorem 2.2, the following family of closed subsets of
K(X) will play a crucial role.

Definition 2.3. For each n ∈ N∗, let us denote by P(n) the family of
all (compact) subsets of X containing at most n points. We shall denote
by H the family of all closed sets F ⊂ K(X) with the following property:
F ∩ P(n) is nowhere dense in P(n) for each n ∈ N∗.
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Since
⋃
n P(n) is dense in K(X), it is clear that all sets in H are nowhere

dense. The following lemma gives a characterization of sets in H.

Lemma 2.4. For a closed set F ⊂ K(X), the following are equivalent :

(1) F ∈ H.
(2) There exists a dense open hereditary set U ⊂ K(X) with F ∩ U = ∅.
Proof. It is easy to check that if A is a dense hereditary subset of K(X),

then A ∩ P(n) is dense in P(n) for all n ∈ N∗. Thus, the complement of a
dense open hereditary set belongs to H. Conversely, assume that F ∈ H. To
show that (2) is satisfied, we start with the following Claim.

Claim. For every open nonempty set V ⊂ K(X) there exists an open
hereditary set W such that W ∩ V 6= ∅ and W ∩F = ∅.

Proof. We may assume that V has the form

V = {K ∈ K(X); K ⊂ U0, K ∩ Ui 6= ∅, i = 1, . . . , n},
where U0 ⊂ X is open and the Ui’s are pairwise disjoint open subsets of U0.
For each set I = {i1, . . . , ik} ⊂ {1, . . . , n}, let πI : U1 × · · · × Un → K(X)
be the map defined by πI(x) = {xi1 , . . . , xik}. Since F ∩ P(k) is nowhere
dense in P(k) for each k ∈ {1, . . . , n}, all sets OI = {x; πI(x) 6∈ F} are
dense in U1 × · · · × Un. It follows that the intersection of all these (finitely
many) open sets OI is nonempty; in other words, there exists a finite set
F ∈ V with cardinality n such that no nonempty subset of F belongs to F .
Actually, since the isolated point ∅ is not in F either, no subset of F belongs
to F . Therefore, if W ⊃ F is a small enough open set, then the hereditary
open set W = K(W ) is disjoint from F . Indeed, otherwise one could find a
sequence (Ki) ⊂ K(X), with Ki ⊂ {z ∈ X; %(z, F ) < 2−i} and Ki ∈ F for
all i. Then some subsequence of (Ki) converges to a set K ⊂ F ; and since F
is closed, K is in F , which is a contradiction.

Now, let U be the union of all hereditary open subsets of K(X) disjoint
from the set F . Then U is open, hereditary and U ∩ F = ∅. Moreover, it
follows from the Claim that U is also dense in K(X).

In what follows we shall denote by Hext the family of all sets B ⊂ K(X)
which can be covered by a countable family of sets from H:

Hext =
{
B ⊂ K(X); ∃(Fn)n∈N ⊂ H : B ⊂

∞⋃

n=0

Fn
}
.

With this notation, Lemma 2.4 immediately implies the following corollary.

Corollary 2.5. A set I ⊂ K(X) is big if and only if K(X) \ I ∈ Hext.

Proof. If K(X)\I ∈ Hext, let (Fn) be a sequence of sets from H covering
K(X) \ I, and pick dense open hereditary sets Un such that Un ∩ Fn = ∅.
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Then G =
⋂
n Un shows that I is big. The converse is proved in the same way,

using the fact that any Gδ hereditary subset of K(X) is the intersection of a
sequence of open hereditary sets. This well known fact can be seen as follows.
Let X̂ be some metrizable compactification of X. Then K(X) is Gδ in K(X̂),
so a Gδ hereditary set G ⊂ K(X) is Gδ in K(X̂). Write G =

⋂
n V̂n, where

the sets V̂n are open in K(X̂). Then the sets Ûn = {K̂ ∈ K(X̂); K(K̂) ⊂ V̂n}
are open in K(X̂) because X̂ is compact, and obviously hereditary. Thus,
Un = K(X)∩Ûn is open and hereditary in K(X) for all n, and G =

⋂
n Un.

By 2.5, proving Theorem 2.2 amounts to showing that if I ⊂ K(X) is Π1
1,

comeager and hereditary, then K(X) \ I ∈ Hext. Lemma 2.7 below implies
this when I is assumed to be Σ0

2 instead of being merely Π1
1. Before proving

this lemma, we collect some simple remarks on the space K(X).
We fix some compatible Polish metric % on X, and we associate to it the

Hausdorff metric on K(X), which is Polish and compatible with the Vietoris
topology. The open ball with center K and radius ε in K(X) will be denoted
by B(K, ε).

Lemma 2.6.

(i) Let ε > 0, n ∈ N∗, F ∈ K(X), and F ∗ ∈ P(n) with F ∗ ⊂ F . If
T ∈ B(F, ε) then there exists T ∗ ⊂ T such that T ∗ ∈ P(n)∩B(F ∗, ε).

(ii) Let ε > 0 and F, F ∗, T ∗ ∈ K(X). Assume that F ∗ ⊂ F and T ∗ ∈
B(F ∗, ε). Then there exists T ∈ K(X) such that T ∗ ⊂ T and T ∈
B(F, ε).

Proof. (i) For every x ∈ F ∗ one can find a point y(x) ∈ T such that
%(x, y(x)) < ε. Then the set T ∗ = {y(x); x ∈ F ∗} has the required proper-
ties.

(ii) Just put T = T ∗ ∪ F .

Lemma 2.7. Let L ⊂ K(X) be a Gδ set with L 6∈ Hext. Then the set

T = {K ∈ K(X); ∃K∗ ∈ L : K∗ ⊂ K}
is not meager in K(X).

Proof. We will use the so-called Banach–Mazur game; let us recall its
definition. Let Y be a metric space and A ⊂ Y. The Banach–Mazur game
G(A) = G(A,Y) is defined as follows. There are two players, called I and II.
They choose alternately nonempty open sets U1 ⊃ V1 ⊃ U2 ⊃ V2 ⊃ · · · :

I U1 U2 . . .

II V1 V2 . . .

Player II wins the game if A∩⋂∞n=1 Vn = ∅; otherwise I wins.
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The main result concerning the Banach–Mazur game reads as follows
(see [K1]): the set A is meager in Y if and only if II has a winning strategy
in the game G(A,Y).

Now we turn to the proof of 2.7. By removing from L all its relatively
open subsets which are in Hext, we may and do assume that for every open
set O ⊂ K(X) intersecting L we have O ∩ L 6∈ H. We also fix a nonincreasing
sequence (Ln)n≥1 of open sets such that L =

⋂∞
n=1 Ln.

We will show that the first player has a winning strategy in the Banach–
Mazur game G(T ) = G(T ,K(X)). A fortiori, II has no winning strategy,
hence the set T is not meager in K(X).

The second player will play nonempty open sets Vn’s and the first player
will play balls B(Fn, εn), with εn ∈ ]0, 1/n[. Besides these balls, I will con-
struct in the nth step an integer jn ∈ N∗ and a set F ∗n ∈ P(jn) to obey the
following conditions:

(a) B(Fn+1, εn+1) ⊂ B(Fn, εn);
(b) F ∗n ⊂ Fn;
(c) B(F ∗n+1, εn+1) ⊂ B(F ∗n , εn);
(d) B(F ∗n , εn) ⊂ Ln;
(e) P(jn) ∩B(F ∗n , εn) ⊂ L.

The first step. Choose K ∈ L and τ > 0 such that B(K, τ) ⊂ L1. We
have B(K, τ/2) ∩ L 6∈ H, so there exist an integer j1 ∈ N∗, a set F ∗1 ∈ P(j1)∩
B(K, τ) and a positive number ε1 ∈ ]0, 1[ such that P(j1) ∩B(F ∗1 , ε1) ⊂ L.
Moreover, since F ∗1 ∈ B(K, τ) ⊂ L1, we may demand B(F ∗1 , ε1) ⊂ L1.
Putting F1 := F ∗1 finishes the description of I’s first move.

The (n + 1)st step. Let Vn ⊂ B(Fn, εn) be the nth move of II. Choose
T ∈ K(X) and δ > 0 such that B(T, δ) ⊂ Vn. To define the (n+1)st move of
I, we first find T ∗ ∈ P(jn) ∩B(F ∗n , εn) such that T ∗ ⊂ T , which is possible
by 2.6(i). Using (e), we find K ∈ B(T ∗, δ)∩B(F ∗n , εn)∩L. Let τ > 0 be such
that B(K, τ) ⊂ B(T ∗, δ) ∩ B(F ∗n , εn) ∩ Ln+1. We have B(K, τ/2) ∩ L 6∈ H,
so there exist jn+1 ∈ N∗, F ∗n+1 ∈ P(jn+1)∩B(K, τ) and εn+1 ∈ ]0, 1/(n+1)[
such that P(jn+1) ∩ B(F ∗n+1, εn+1) ⊂ L. Since F ∗n+1 ∈ B(F ∗n , εn) ∩ Ln+1,
we may demand B(F ∗n+1, εn+1) ⊂ Ln+1 and B(F ∗n+1, εn+1) ⊂ B(F ∗n , εn).
Since F ∗n+1 ∈ B(T ∗, δ), 2.6(ii) allows us to choose Fn+1 ∈ K(X) such that
F ∗n+1 ⊂ Fn+1 and Fn+1 ∈ B(T, δ); and taking εn+1 smaller if necessary, we
also have B(Fn+1, εn+1) ⊂ B(T, δ) ⊂ Vn. This finishes the description of I’s
strategy.

Let B(F1, ε1),V1, B(F2, ε2),V2, . . . be a sequence of moves inG(T ), where
I follows the strategy described above. So there are also auxiliary sets
F ∗1 , F

∗
2 , . . . . Since εn → 0, it follows from (a) that there exists F ∈ K(X)

such that {F} =
⋂∞
n=1 Vn. According to (c), there exists F ∗ ∈ K(X) such
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that {F ∗} =
⋂∞
n=1 B(F ∗n , εn). Property (b) gives F ∗ ⊂ F , and properties (c)

and (d) imply F ∗ ∈ ⋂∞n=1 Ln = L. Thus we have F ∈ T and I has won.

The last ingredient needed in the proof of Theorem 2.2 is the following
very useful covering theorem due to Solecki ([S]).

Theorem 2.8. Let Y be a Polish space, and let Q be a family of closed
subsets of Y. If B ⊂ Y is a Σ1

1 set which is not in Qext, then B contains a
Gδ set which is not in Qext either.

We can now give the

Proof of Theorem 2.2. Let I ⊂ K(X) be Π1
1, comeager, and hereditary.

By 2.5, it is enough to show that K(X) \ I ∈ Hext. So, towards a contradic-
tion, assume that K(X) \I 6∈ Hext. The set K(X) \I is Σ1

1, hence according
to Solecki’s theorem, there is a Gδ set L ⊂ K(X) \ I such that L 6∈ Hext.
Define

T = {K ∈ K(X); ∃K∗ ∈ L : K∗ ⊂ K}.
Since I is hereditary, we have T ∩ I = ∅. Using Lemma 2.7 we infer that T
is not meager, a contradiction with comeagerness of I.

Remark. If, in addition to being comeager, the family I is also a σ-
ideal, one may wonder if it must contain a dense Gδ (σ-)ideal. By a result
of Kechris ([K2]), this is in fact not true; the family of U0-sets provides a
counterexample.

As we said above, it seems likely that a positive answer to Problem 2.1
cannot be given in ZFC. On the other hand, the following result shows that
a positive answer is nevertheless plausible.

Theorem 2.9. Assume that ωL[x]
1 < ω1 for all x ∈ ωω. Then every

comeager hereditary subset of K(X) is big.

Proof. As explained at the beginning of this section, it is enough to
consider the case of a Σ1

1 comeager hereditary set I ⊂ K(X), and as before,
it is enough to show that K(X) \ I ∈ Hext. Now, it was proved by Solecki
([S, Corollary 2]) that, under the hypothesis “ωL[x]

1 < ω1 for all x ∈ ωω”,
his covering Theorem 2.8 is valid for all Σ1

2 sets (and not just for Σ1
1 sets),

provided the family Q is Σ1
2 in the hyperspace F(K(X)) of all closed subsets

of K(X); here, F(K(X)) is equipped with the Effros Borel structure (see [K1]
for the definition). In the present situation, K(X) \ I is Π1

1 in K(X), and H

is Borel in F(K(X)). Thus, Solecki’s theorem applies, and one can conclude
the proof as above.

To conclude this section, we prove the following simple consequence of
Theorem 2.2, which will be needed later.
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Corollary 2.10. If I ⊂ K(X) is Π1
1, nonmeager , and hereditary , then

I contains a Gδ hereditary set G which is dense in K(U), for some nonempty
open set U ⊂ X.

This follows at once from 2.2 and the next lemma.

Lemma 2.11. If I is a nonmeager hereditary subset of K(X) with the
property of Baire, then I is comeager in K(U), for some nonempty open set
U ⊂ X.

Proof. Since I is nonmeager and has the property of Baire, it is comeager
in some nonempty open set U ⊂ K(X) of the form {K ∈ K(X); K ⊂ U,
K∩Ui 6= ∅ for i = 1, . . . , n}, where U is an open subset of X and U1, . . . , Un
are open subsets of U . We show that I is comeager in K(U). Let

F = U \ I and F̃ = {K ∈ K(X); ∀L ∈ U : K ∪ L ∈ F}.
Since I is hereditary, K(U) \ I is contained in F̃ . Now, since F is meager
and the map (K,L) 7→ K ∪ L is continuous and open on the product space
K(X) × K(X), the set {(K,L) ∈ K(X) × K(X); K ∪ L ∈ F} is meager
in K(X) × K(X). By the Kuratowski–Ulam Theorem, it follows that F̃ is
meager in K(X), and the proof is complete.

3. Nicely presented Π0
3 sets. Let Bl∞ be the unit ball of the complex

Banach space l∞(N) = l1(N)∗, and denote by w∗ the w∗-topology on Bl∞ .
Alternatively, Bl∞ is the infinite product DN, where D is the closed unit disk
in C, and w∗ is simply the product topology. It is easy to check that the unit
ball of c0 is Π0

3 in (Bl∞ , w∗). Moreover, by a classical result of Hahn (see [K1,
23F] or [Kö]), it is also Π0

3-complete. Actually, Hahn proved the following
stronger result: if B is any Π0

3 set in a metrizable topological space X, then
there exists a continuous map Φ : X → (Bl∞ , w∗) such that Φ−1(c0) = B.
Such a map Φ is called a continuous reduction.

For example, the family R of Rajchman probability measures on T is
reduced to c0 by the Fourier transform F : P(T) → Bl∞ . Now, in that
particular case, the reduction F has an additional property, which is in fact
not innocent: it is also (‖ ‖, ‖ ‖)-Lipschitz.

If X is a Polish space, we shall say (with the example of R in mind)
that a set B ⊂ P(X) is nicely Π0

3 if it can be reduced to c0 by a map
Φ : P(X) → Bl∞ which is both (Prokhorov, w∗)-continuous and (‖ ‖, ‖ ‖)-
Lipschitz. Such a set B has to be both Π0

3 in the Prokhorov topology and
‖ ‖-closed. The converse may seem to be plausible in view of Hahn’s result,
but it is in fact not true; see Examples 3 and 4 below.

Example 1. If X = G is a second-countable, nondiscrete, locally com-
pact abelian group, then the family R of Rajchman probability measures on
G is nicely Π0

3.
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Proof. Let Γ be the dual group of G, and let (Wn) be an increasing
sequence of open subsets of Γ with compact closures such that Γ =

⋃
nWn.

Then a measure µ on G is a Rajchman measure if and only if Φn(µ) =
sup{|µ̂(γ)|; γ ∈ W n+1 \Wn} tends to 0 as n tends to infinity, so Φ = (Φn)
shows that R is nicely Π0

3.

Example 2. If X is a compact metric space, then the family C of all
continuous Borel probability measures on X is nicely Π0

3. Moreover , C is
also Π0

2.

Proof. Let us fix some countable basis for the topology of X, and some
compatible metric on X. Let (Un, Vn)n∈N be an enumeration of all pairs of
basic open sets (U, V ) such that U ⊂ V , chosen in such a way that the
diameter of Vn tends to 0 as n tends to infinity, and each pair (U, V ) with V
reduced to a single point is repeated infinitely many times. For each n ∈ N,
let fn be a continuous function on X with support contained in Vn, such
that 0 ≤ fn ≤ 1 and fn ≡ 1 on Un. Then a measure µ ∈ P(X) is continuous
if and only if Φn(µ) = � fn dµ tends to 0 as n tends to infinity, so Φ = (Φn)
shows that C is nicely Π0

3. That C is also Π0
2 can be seen as follows. For

each n ∈ N, let Fn be a finite covering of X by open sets of diameters less
than 2−n. Then a measure µ ∈ P(X) is continuous if and only if

∀k ∈ N ∃n ∈ N ∀V ∈ Fn : µ(V ) < 2−k,

which concludes the proof because the conditions “µ(V ) < 2−k” are open.

Example 3. Let X be a Polish space, let A be any Π0
3 subset of X, and

let B = P(A), the family of all Borel probability measures on X concentrated
on A:

P(A) = {µ ∈ P(X); µ(X \ A) = 0}.
Then B is both ‖ ‖-closed and Π0

3. However , if A is dense in X and has
the form A =

⋃
nKn, where (Kn) is a sequence of pairwise disjoint (closed)

nowhere dense perfect sets, then P(A) is not nicely Π0
3.

Proof. Write A =
⋂
n

⋃
p Fnp, where the Fnp’s are closed subsets of X, all

sequences (Fnp), n ∈ N, are nondecreasing with respect to p, and (
⋃
p Fnp)

is a nonincreasing sequence. Then a measure µ ∈ P(X) is not concentrated
on A if and only if

∃k ∈ N ∃n ∈ N ∀p ∈ N : µ(Fnp) < 1− 2−k.

For each closed set F ⊂ X and ε > 0, the condition “µ(F ) < ε” is open, so
P(X) \P(A) is Σ0

3. The second part will follow from Theorem 4.1.

Example 4. Let X be a Polish space, and let λ ∈ P(X). Then Bλ =
L1(λ)∩P(X) is ‖ ‖-closed and Π0

3. However , if λ is a continuous measure,
then Bλ is not nicely Π0

3.
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Proof. It is clear that Bλ is ‖ ‖-closed, and it is also ‖ ‖-separable. Let
D be a countable ‖ ‖-dense set in Bλ; then a probability measure µ is in Bλ

if and only if

∀n ∈ N ∃ν ∈ D : ‖µ− ν‖ ≤ 2−n.

Since the norm is lower semicontinuous on M(X), this shows that Bλ is Π0
3.

It will follow from Theorem 4.1 that Bλ is not nicely Π0
3 if λ is a continuous

measure.

Remark. In all the examples given above, the family B is more than just
hereditary and ‖ ‖-closed: it is also convex; in other words, the positive cone
generated by B is a band of positive measures. For a detailed study of bands
of measures and their polar σ-ideals, we refer to [D]. In particular, it is shown
in [D] that any strongly convex Borel band has a “c0-like” representation
where the map Φ is moreover linear, and c0 is replaced by cF = {(xn) ∈ l∞;
limF xn = 0}, for some Borel filter F on the integers. More general results
on the complexity of families of the form P(A) can also be found in [D].

4. Finding big sets in large families of small sets. We now state
and prove the abstract result mentioned in the introduction. Below, if B
is a family of positive measures on X, a set A ⊂ X is called an IB-set if
µ(A) = 0 for all measures µ ∈ B, and an MB-set otherwise.

Theorem 4.1. Let X be a Polish space, and let B be a hereditary subset
of P(X). Assume that B is nicely Π0

3 and that X is the support of some
continuous measure in B. Let also I be a nonmeager hereditary Π1

1 subset
of K(X). Then there exists a compact set K ∈ MB such that every finite
subset of K belongs to I.

Since B is nicely Π0
3, we can choose once and for all a map

Φ = (Φn) : P(X)→ Bl∞ ,

both (‖ ‖, ‖ ‖)-Lipschitz and (Prokhorov, w∗)-continuous, such that B =
Φ−1(c0). We also fix some Polish compatible metric d on P(X), and some
(unspecified) compatible metric on X.

The proof of Theorem 4.1 is inspired by Körner’s direct construction of
Rudin sets (see [LP]). We shall need two lemmas.

Lemma 4.2. Let F be a closed subset of X, let ν be a finite Borel positive
measure on F , and let U be a neighborhood of ν in M(X). Then one can
find W1, . . . ,Wm, relatively open subsets of F with pairwise disjoint closures,
such that the following property holds: whenever a positive measure ν̃ ∈
M(F ) satisfies ‖ν̃‖ ≤ ‖ν‖ and ν̃(Wj) = ν(Wj) for j = 1, . . . ,m then ν̃ ∈ U.
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Proof. We assume ν 6= 0, otherwise there is nothing to prove. We may
also assume that U has the form

U = {ν̃; |〈ν̃ − ν, fi〉| < ε for all i ∈ I},
for some positive number ε and some finite family (fi)i∈I in the unit ball
of Cb(F ). Let K ⊂ F be a zero-dimensional compact set such that ν(K) >
‖ν‖ − ε/4. Then one can find relatively open sets W1, . . . ,Wm ⊂ F with
pairwise disjoint closures such that K ⊂ W1 ∪ · · · ∪Wm and, for each j ∈
{1, . . . ,m}, the oscillation of all functions fi on Wj is less than ε/4‖ν‖. Let
ν̃ be any positive measure on F such that ‖ν̃‖ ≤ ‖ν‖ and ν̃(Wj) = ν(Wj)
for j = 1, . . . ,m. Putting W =

⋃m
j=1Wj , we have ν(F \W ), ν̃(F \W ) < ε/4,

hence | � F\W fi dν̃ − � F\W fi dν| < ε/2 for all i ∈ I. Moreover, if i ∈ I then,
taking any point xj ∈Wj, one gets∣∣∣

�

Wj

fi dν̃ −
�

Wj

fi dν
∣∣∣ ≤

�

Wj

|fi − fi(xj)| dν̃ +
�

Wj

|fi − fi(xj)| dν ≤
ε

2‖ν‖ ν(Wj)

for all j; summing up, it follows that | � W fi dν̃ − � W fi dν| ≤ ε/2. Thus, we
obtain |〈ν̃ − ν, fi〉| < ε for all i ∈ I, and the proof is complete.

If E,F are two closed subsets of X, we shall write F ≺ E if F has the
form V 1 ∪ · · · ∪ V l, where the Vj ’s are nonempty relatively open subsets of
E with pairwise disjoint closures.

Lemma 4.3. Let µ be a continuous measure in B, and let U be a dense
hereditary open subset of K(supp(µ)). Finally , let U1, . . . , Up be open subsets
of X at positive distance from each other. Then, for each ε > 0, there exists
a probability measure µ̃ ∈ B with the following properties:

(1) ‖Φ(µ̃)− Φ(µ)‖∞ < ε;
(2) d(µ̃, µ) < ε;
(3) supp(µ̃) ≺ supp(µ);
(4) if (x1, . . . , xp) ∈ U1 × · · · × Up and xi ∈ supp(µ̃) for all i, then
{x1, . . . , xp} ∈ U .

Proof. Let α ∈ ]0, 1[ to be chosen later. Since µ is continuous, one can
find V1, . . . , VN , nonempty relatively open subsets of supp(µ) with pairwise
disjoint closures, such that µ(V j) < α for all j and µ(X \ ⋃i Vi) < α. We
may also assume that no Vj intersects more than one Ui, since the Vj’s may
be chosen to have arbitrarily small diameters and the Ui’s are at positive
distance from each other. Let J be the set of all 1-1 sequences j = (j1, . . . , jp)
of length p, with terms in {1, . . . , N}. We enumerate J as {j1, . . . , jM}. For
j = (j1, . . . , jp) ∈ J , we put Vj = (Vj1 ∩ U1) ∪ · · · ∪ (Vjp ∩ Up).

We construct by induction probability measures µ̃0, µ̃1, . . . , µ̃M in B and
integers n0 < n1 < · · · < nM with the following properties, whenever they
make sense:
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(o) supp(µ̃0) ⊂ ⋃j Vj and ‖µ̃0 − µ‖ < 2α;
(i) |Φn(µ̃k)− Φn(µ̃k−1)| < 2−kα if n < nk−1;
(ii) d(µ̃k, µ̃k−1) < 2−kε;
(iii) ‖µ̃k − µ̃k−1‖ < 2pα;
(iv) |Φn(µ̃k)| < α if n ≥ nk;
(v) supp(µ̃k) ≺ supp(µ̃k−1);
(vi) every compact subset of supp(µ̃k) ∩ Vjk is in U .

For every i ∈ {1, . . . , N} we find a nonempty open set Pi such that P i ⊂ Vi
and µ(X \⋃i P i) < α. Let

µ̃0 =
1

µ(
⋃
j P j)

µ|⋃j P j .

Then, putting P =
⋃
j P j and β = µ(P ), one gets

‖µ̃0 − µ‖ ≤ ‖(1/β − 1)µ|P ‖+ µ(X \ P ) < (1− β) + α < 2α,

so condition (o) is satisfied. Moreover, since µ̃0 ∈ B, we can choose an integer
n0 such that |Φn(µ̃0)| < α if n ≥ n0.

Assume the construction has been carried out up to k − 1. If H :=
Vjk ∩ supp(µ̃k−1) is empty, then we put µ̃k = µ̃k−1 and nk = 1 + nk−1.
If H 6= ∅, then let ν be the restriction of µ̃k−1 to F := H. Let also U
be a neighborhood of ν, to be specified later, and let W1, . . . ,Wm be the
relatively open subsets of F given by Lemma 4.2. Since F ≺ supp(µ) by
induction hypothesis (v), the set U ∩ K(F ) is dense in K(F ). Since U is
hereditary, it follows that one can find points x1, . . . , xm such that xi ∈ Wi

for all i and all subsets of {x1, . . . , xm} are in U ; and since U is open, one
can therefore choose nonempty relatively open sets O1, . . . , Om ⊂ F such
that Oi ⊂ Wi and every compact subset of

⋃
iOi is in U . By Lemma 4.2,

the measure

ν̃ =
m∑

i=1

ν(Wi)
ν(Oi)

ν|Oi

is in U. If we now choose U small enough, then the measure µ̃k = ν̃+ µ̃k−1
|X\F

satisfies (i) and (ii). It also satisfies (v) and (vi), and (iii) as well because
‖ν‖ < pα. Moreover, µ̃k is in B because it is absolutely continuous with
respect to µ̃k−1, so one can choose nk > nk−1 satisfying (iv).

Let now µ̃ = µ̃M ; we check that µ̃ has the required properties. By (v)
and (ii), it is clear that supp(µ̃) ≺ supp(µ) and d(µ̃, µ) < ε. Moreover, if
(x1, . . . , xp) ∈

∏p
i=1 Ui and xi ∈ supp(µ̃), i = 1, . . . , p, then there is some

index k ∈ {1, . . . ,M} such that {x1, . . . , xp} ⊂ Vjk , because supp(µ̃) ⊂ ⋃j Vj

(by (o)) and no Vj intersects more than one Ui. Since supp(µ̃) ⊂ supp(µ̃k),
it follows from (vi) that {x1, . . . , xp} ∈ U . Finally, let n ∈ N, and let k be
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the greatest integer in {−1, 0, . . . ,M} such that nk ≤ n (we put n−1 = 0).
If k ≥ 0, then, denoting by C the Lipschitz constant of Φ, we get

|Φn(µ̃)− Φn(µ)| ≤ C‖µ̃0 − µ‖+ |Φn(µ̃k)− Φn(µ̃0)|+ |Φn(µ̃)− Φn(µ̃k)|
≤ 2Cα+ 2α+ |Φn(µ̃)− Φn(µ̃k)|
≤ 2α(C + 1) + C‖µ̃k+1 − µ̃k‖+

∑

k′>k+1

|Φn(µ̃k
′
)− Φn(µ̃k

′−1)|

≤ 2α(C + 1) + 2Cpα+ α
∑

k′>k+1

2−k
′
.

If k = −1, then n < n0 and we simply get

|Φn(µ̃)− Φn(µ)| ≤ C‖µ̃0 − µ‖+ |Φn(µ̃)− Φn(µ̃0)|

≤ 2Cα+
M∑

i=1

|Φn(µ̃k)− Φn(µ̃k−1)| ≤ 2Cα+ α.

It follows that ‖Φ(µ̃)− Φ(µ)‖∞ < ε if α is chosen small enough.

Proof of Theorem 4.1. By 2.10, the family I contains a Gδ hereditary set
G which is dense in K(U), for some nonempty open set U ⊂ X; and replacing
X by U , we may in fact assume that G is dense in K(X). Let (U n) be a non-
increasing sequence of open hereditary subsets of K(X) such that G =

⋂
n Un

(see the proof of 2.5). Let us also fix some countable basis for the topology
of X, and let (Un) be an enumeration of all finite sequences (U1, . . . , Up) of
basic open subsets of E whose closures are at positive distance from each
other, where each sequence is repeated infinitely many times.

If F ⊂ X is any closed set such that F ≺ X, then Un ∩K(F ) is dense in
K(F ) for all n ∈ N. By Lemma 4.3, one can therefore construct a sequence
(µn) ⊂ B such that the following properties hold:

(1) d(µn+1, µn) < 2−n;
(2) ‖Φ(µn+1)− Φ(µn)‖∞ < 2−n;
(3) supp(µn+1) ≺ supp(µn);
(4) write Un = (U1, . . . , Up); if (x1, . . . , xp) ∈ U1 × · · · × Up and xi ∈

supp(µn) for all i ∈ {1, . . . , p}, then {x1, . . . , xp} ∈ Un.

By (1), the sequence (µn) has a limit µ∞ ∈ P(X). Since Φ is w∗-continuous,
Φ(µ∞) is the w∗-limit of the sequence (Φ(µn)). By (2), it follows that
Φ(µ∞) ∈ c0, so µ∞ ∈ B. Moreover, conditions (3) and (4) ensure that
any finite subset of supp(µ∞) is in G, hence in I. Thus any compact set
K ⊂ supp(µ∞) with positive µ∞-measure satisfies the conclusion of the
theorem.

Remarks. (1) As we have already said, the examples given above are
all convex families of measures. Yet, it may be worth pointing out that the
preceding proof does not need any convexity assumption on the family B.
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(2) In general, one cannot hope to get a set K ∈MB ∩ I. For example,
the family of compact U0-sets is Π1

1 comeager in K(T), and surely does not
contain any M0-set.

(3) The proof of Theorem 4.1 actually showed that, starting from any
continuous measure µ ∈ B with support X, one can construct a measure
µ∞ ∈ B such that all finite subsets of supp(µ∞) are in I, with ‖Φ(µ∞) −
Φ(µ)‖∞ arbitrarily small. This remark will be used in the proof of Corol-
lary 4.11 below.

(4) It is easily seen that Theorem 4.1 is still true, with exactly the same
proof, if one extends the class of nicely presented Π0

3 sets by allowing the
reduction Φ : P(X)→ Bl∞ to be (‖ ‖, ‖ ‖)-uniformly continuous rather than
(‖ ‖, ‖ ‖)-Lipschitz. On the other hand, the proof does not work any more if
the map Φ is only assumed to be (‖ ‖, ‖ ‖)-continuous, and we do not know
if Theorem 4.1 is still true in this more general setting.

We now list some consequences of Theorem 4.1.

Corollary 4.4. If G is a nondiscrete, second countable LCA group,
then any M0-set in G contains a compact M0-set K such that all finite
subsets of K are Kronecker sets. In particular , K is an independentM0-set.

Proof. Recall that a compact set C ⊂ G is called a Kronecker set
if C is totally disconnected and every continuous function f : C → Tq
can be uniformly approximated by characters of G, where q = q(G) is the
topological order of G, Tq = T if q =∞ and Tq = {z ∈ T; zq = 1} if q <∞.
It is well known that a finite set is Kronecker if and only if it is independent
and all its elements have order q(G). Moreover, the family of Kronecker
subsets of G is hereditary and Gδ in K(G), and it is not difficult to show
that if E ⊂ G is the support of a Rajchman measure, then the Kronecker
sets contained in E are dense in K(E) (see [M1]). Since Rajchman measures
are continuous and every M0-set contains such a set E, the result now
follows directly from 4.1.

Corollary 4.5. If G is a nondiscrete, second countable LCA group,
and if E ⊂ G is the support of a Rajchman measure, then every U0 subset
of E with the property of Baire is meager in E.

Proof. If A ⊂ E is nonmeager and has the property of Baire, it contains
a Gδ set H which is dense in some nonempty open subset of E. Then Ẽ = H
is the support of a Rajchman measure, and I = K(H) is Gδ, hereditary, and
dense in K(Ẽ). By Theorem 4.1, it follows that H is anM0-set, hence A is
an M0-set as well.

The next corollary is a generalization of a well known Mycielski-type
result (see [My]).



Rudin-like sets 15

Corollary 4.6. Let G be a nondiscrete, second countable LCA group,
and let (Rn) be a sequence of finitary relations on G; thus Rn is a subset
of Gkn , for some positive integer kn. Assume that for each n, the relation Rn
is meager in Gkn . Then there exists an M0-set K ⊂ G with the following
property : if n ∈ N and x1, . . . , xkn are pairwise distinct points of K, then
¬Rn(x1, . . . , xkn).

Proof. We may obviously assume that all relations Rn are Fσ . Let I
be the family of all compact subsets of G with the above property. It is
easy to check that I is a Gδ subset of K(G), obviously hereditary. Since
I is determined by its finite members, it is enough, by Theorem 4.1, to
show that I is dense in K(G). Moreover, by the Baire Category Theorem,
we may assume that there is just one meager Fσ relation R ⊂ Gk. Let
N(k) be the family of all finite subsets of N with cardinality k. For each set
I = {i1, . . . , ik} ∈ N(k), let πI : GN → Gk be the “canonical projection”
(πI(x) = (xi1 , . . . , xik)). By the Kuratowski–Ulam Theorem, all sets BI =
{(xn) ∈ GN; ¬R(πI(x))} are comeager in the Polish space GN, so B =⋂
I∈N(k) BI is also comeager. It follows that each finite subset of G can be

approximated by a (finite) set in I, hence I is dense in K(G).

Corollary 4.7. Given any dense Gδ set G ⊂ R containing 0, there
exists an algebraically independent M0-set K ⊂ R such that the subgroup
generated by K is contained in G.

Proof. Let (fn) be an enumeration of all nonconstant polynomial func-
tions in finitely many real variables with rational coefficients, fn : Rkn
→ R. Since the fn’s are real-analytic, their level sets are nowhere dense,
in other words the relations “fn(x1, . . . , xkn) = 0” are meager. Moreover, if
(n1, . . . , np) is a finite sequence of nonzero integers, the relation “

∑p
i=1 nixi

6∈ G” is meager in Rp by the Kuratowski–Ulam Theorem, because all its
sections along the x1-axis are translates of the meager set (1/n1)(R \ G).
Thus, the result follows from Corollary 4.6.

Corollary 4.8. There exists an M0-set K ⊂ R2 that meets each line
in at most 2 points.

Proof. Let R be the relation defined on R6 = R2 × R2 × R2 by

R(a, b, c) ⇔ a, b, c lie on the same line.

This relation is obviously nowhere dense, so the result follows from Corol-
lary 4.6.

Corollary 4.9. Let X be a Polish space and let A be a dense subset
of X of the form A =

⋃
nKn, where (Kn) is a sequence of pairwise disjoint

(closed) nowhere dense perfect sets. Then B = P(A) is not nicely Π0
3.
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Proof. The hypotheses on A imply that B contains a continuous measure
with support X. But G = X \A is a dense Gδ subset of X and no measure
in B is supported on G. By Theorem 4.1 applied to I = K(G), the family
B cannot be nicely Π0

3.

Corollary 4.10. Let X be a Polish space, and let λ be a continuous
Borel probability measure on X. Then Bλ = L1(λ)∩P(X) is not nicely Π0

3.

Proof. Let E = supp(λ), and let G ⊂ E be a dense Gδ set such that
λ(G) = 0; such a set G exists because E has no isolated points. If Bλ

were nicely Π0
3, then one should have λ(G) > 0 by Theorem 4.1 applied to

I = K(G).

This last corollary can be strengthened as follows.

Corollary 4.11. Let X be a compact metric space, and let B ⊂ P(X)
be hereditary and nicely Π0

3. If B contains a continuous measure, then the
σ-ideal IB is not thin, in other words there exists an uncountable family of
pairwise disjoint MB-sets. In particular , B is not ‖ ‖-separable.

Proof. Let Bc be the family of all continuous measures in B. Then Bc
is still hereditary. Moreover, Bc is also nicely Π0

3. Indeed, the family C
of continuous probability measures on X is nicely Π0

3 (Example 2 above),
and one checks immediately (using a product map Φ = (Φ1, Φ2) : P(X) →
l∞× l∞ ' l∞) that the intersection of two nicely Π0

3 sets is again nicely Π0
3.

Let Φ : P(X)→ Bl∞ be (Prokhorov, w∗)-continuous and (‖ ‖, ‖ ‖)-Lipschitz
with Φ−1(c0) = Bc. It is enough to prove the following

Fact. If µ ∈ Bc and ε > 0 are given, then there exist two measures
µ0, µ1 ∈ Bc with pairwise disjoint supports contained in supp(µ) and such
that ‖Φ(µi)− Φ(µ)‖∞ < ε, i = 0, 1.

Indeed, once this is done, one can construct a Cantor scheme (µs)s∈2<ω

⊂ Bc with ‖µs − µt‖ < 2−|s| and supp(µt) ⊂ supp(µs) if s � t, while
supp(µs) ∩ supp(µt) = ∅ if s and t are incomparable. Since Bc is norm
closed in P(X), this gives an uncountable family (µα)α∈2ω of measures in
Bc with pairwise disjoint supports.

Let us now prove the above Fact. Let E be the support of µ, and let
G0 ⊂ E be a dense Gδ set in E with empty interior in E; such a set G0 exists
because E is perfect. By the proof of Theorem 4.1 applied to Bc ∩ P(E)
and I0 = K(G0) ⊂ K(E) (see Remark (3) following that proof), one can
find a measure µ0 ∈ Bc with compact support contained in G0, such that
‖Φ(µ0)− Φ(µ)‖∞ < ε. Then supp(µ0) is nowhere dense in E, so we can get
the measure µ1 by applying (the proof of) 4.1 to I1 = K(G1), where G1 =
E \ supp(µ0) 6= ∅. This concludes the proof of the Fact, and Corollary 4.11
follows.
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If B is the family of continuous measures on some perfect compact metric
space, Theorem 4.1 can of course be greatly improved: by the Baire Category
Theorem, any dense Gδ subset of K(X) contains a perfect set, hence an
MB-set. A similar statement holds true for any Π0

2 family B. The proof is
also a simple application of the Baire Category Theorem.

Proposition 4.12. Let X be a Polish space, and let B ⊂ P(X) be hered-
itary and Π0

2. Assume that X is the support of some measure in B. Then
every nonmeager hereditary Π1

1 subset of K(X) contains an MB-set.

Proof. Since X is the support of some measure in B and B is hereditary,
it follows easily from Lemma 4.2 that B is dense in P(X). It also follows
from 4.2 that if U is a dense hereditary open subset of K(X) and ε ∈ ]0, 1[,
then the family

PUε = {µ ∈ P(X); µ(V ) > 1− ε for some V ⊂ X open with K(V ) ⊂ U}
is dense in P(X). Moreover, PUε is also open in P(X). Now, let I be a
nonmeager hereditary Π1

1 subset of K(X). By Corollary 2.10, we may in fact
assume that I contains a dense Gδ hereditary set G. Let (Un) be a sequence
of dense hereditary open sets such that G =

⋂
n Un, and let also (εn) be a

sequence of positive numbers such that
∑∞

n=0 εn < 1. Since B is Π0
2 and

dense in P(X), it follows from the Baire Category Theorem that
⋂
n PUnεn

intersects B; in other words, one can find a measure µ ∈ B and a sequence
(Vn) of open subsets of X such that µ(Vn) > 1− εn and K(Vn) ⊂ Un for all
n ∈ N. Then G =

⋂
n Vn has positive µ-measure, and all compact subsets of

G are in G, hence in I. This concludes the proof.

5. Some examples of true Π0
3 sets. To conclude this paper, we give

some examples of natural true Π0
3 sets.

First, we give a short proof (and a slight extension) of a recent result
due to Balcerzak and Darji ([BD]). Below, if X is a Polish space and if I is
a hereditary subset of K(X), we say that a compact set E ⊂ X is I-perfect
if all sets in I ∩ K(E) are nowhere dense in E; equivalently, if V ∩ E 6∈ I
for all open sets V such that V ∩ E 6= ∅. We denote by Iperf the family of
I-perfect sets.

Proposition 5.1. Let X be a Polish space, and let I be a hereditary
subset of K(X) with the Baire property. Assume that I is nonmeager , and
that Iperf is dense in K(X). Then Iperf is not Σ0

3 in K(X).

Proof. We may assume that Iperf is Borel, otherwise there is nothing to
prove. By Lemma 2.11, we may assume that I is comeager in K(X). Since
Iperf is dense and disjoint from I (apart from the empty set), it follows
from the Baire Category Theorem that if V is any nonempty open subset
of X, then Iperf ∩K(V ) cannot be Π0

2 in K(V ). Since Iperf is assumed to be
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Borel, it follows from Wadge’s Theorem (see [K1, 22.11]) that I perf ∩K(V )
is Σ0

2-hard, for each nonempty open set V ⊂ X; in other words, given any
Σ0

2 set A in some zero-dimensional Polish space Z, there exists a continuous
map Ψ : Z → K(V ) such that A = Ψ−1(Iperf). We use this to show that
Iperf is Π0

3-hard. Let B be any Π0
3 subset of some zero-dimensional Polish

space Z, and write B =
⋂
nAn, where the An’s are Σ0

2. Let (Vn) be a
sequence of disjoint open subsets of X accumulating to some point a ∈ X
(such a sequence exists because the denseness of I and Iperf implies that
X is perfect), and for each n, let Ψn : Z → K(Vn) be a continuous map
such that Ψ−1

n (Iperf) = An. Then the map Ψ : Z → K(X) defined by
Ψ(z) = {a} ∪⋃n Ψn(z) is continuous, and Ψ(z) is I-perfect if and only if all
Ψn(z)’s are; in other words, Ψ−1(Iperf) = B. This concludes the proof.

Corollary 5.2. In the following cases, the family Iperf is a true Π0
3

subset of K(X):

(1) X is a perfect Polish space, and I = {K ∈ K(X); λ(K) = 0}, where
λ is a Borel probability measure on X with support X.

(2) X is a perfect locally compact Polish space, and I is the family of
nowhere dense compact sets.

(3) X = E is a closed M0-set in some nondiscrete, second countable
LCA group G, and I is the family of compact U0-sets contained
in X.

Proof. In case (1), the set I is Gδ, so Iperf is Π0
3. Moreover, I is dense

in K(X) (hence comeager) because X is perfect, and Iperf is dense as well
because λ has support X. So Iperf is a true Π0

3 set by Proposition 5.1. Case
(2) is treated in the same way.

In case (3), I has the Baire property since it is Π1
1, and Iperf is Π0

3
because the σ-ideal I has a Σ0

3 hereditary basis (see [DStR], [KL], [M2] or
[T]); and Proposition 5.1 applies to any closed set Ẽ ∈ Iperf contained in E,
because I contains the family of Dirichlet sets, which is Gδ and contains all
finite sets, so I ∩ K(Ẽ) is comeager in K(Ẽ).

Remark. Examples (1) and (2) are given in [BD]. Case (3) was obtained
in [M2], with a much more complicated proof.

Our last result concerns families of probability measures.

Proposition 5.3. Let X be a Polish space, and let B ⊂ P(X) be hered-
itary and closed under infinite convex combinations. Assume that X is the
support of some measure in B, and that the polar σ-ideal IB = {K ∈
K(X); µ(K) = 0 for all µ ∈ B} is nonmeager in K(X). Then B is not Σ0

3.

Proof. Of course, we may assume that B is Borel. Moreover, it is in
fact enough to show that B is not Π0

2: indeed, since B is closed under
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infinite convex combinations, an argument similar to that used in the proof
of Proposition 5.1 will then yield that B is Π0

3-hard; see [D] for the details.
Now, IB is Π1

1 in K(X) because B is assumed to be Borel (hence Σ1
1). By

Proposition 4.12, it follows that B cannot be Π0
2.

Corollary 5.4. Let X be a perfect Polish space, and let λ be a Borel
probability measure on X with support X. Then Bλ = L1(λ) ∩ P(X) is a
true Π0

3 subset of P(X).

Proof. It was observed in Section 3 that Bλ is Π0
3. That Bλ is not Σ0

3
follows at once from 5.3, but it can also be proved directly as follows. Since
λ has support X, the family Bλ is dense in P(X). But Bλ is also meager
in P(X), because it is disjoint from the dense Gδ set P(G), where G is any
λ-negligible dense Gδ subset of X; such a set G exists because X is perfect.
By the Baire Category Theorem, Bλ cannot be Π0

2, and the conclusion easily
follows.

Corollary 5.5. If G is a nondiscrete, second countable LCA group,
then the family of all Rajchman probability measures on G is a true Π0

3 set.

Proof. This follows from 5.3 because the σ-ideal of all compact U0-
subsets of G is comeager in K(G).
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