PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 12, Pages 3601-3608 S 0002-9939(00)05519-2 Article electronically published on June 7, 2000

PYRAMIDAL VECTORS AND SMOOTH FUNCTIONS ON BANACH SPACES

R. DEVILLE AND E. MATHERON

(Communicated by Dale Alspach)

ABSTRACT. We prove that if X, Y are Banach spaces such that Y has nontrivial cotype and X has trivial cotype, then smooth functions from X into Y have a kind of "harmonic" behaviour. More precisely, we show that if Ω is a bounded open subset of X and $f: \overline{\Omega} \to Y$ is C^1 -smooth with uniformly continuous Fréchet derivative, then $f(\partial\Omega)$ is dense in $f(\overline{\Omega})$. We also give a short proof of a recent result of P. Hájek.

This note is motivated by recent results of P. Hájek ([H1], [H2]) concerning (Fréchet) smooth nonlinear operators on the space c_0 .

In [H1], Hájek proved (among other things) that if $f: c_0 \to \mathbb{R}$ is a C^1 -smooth map with uniformly continuous derivative on B_{c_0} , then $f'(B_{c_0})$ is a relatively compact subset of l_1 . From this, he deduced that if Y is a Banach space with non trivial type and $f: c_0 \to Y$ is C^1 -smooth with locally uniformly continuous derivative, then f is locally compact, which means that each point $x \in c_0$ has a neighbourhood V such that f(V) is relatively compact in Y. In [H2], he also proved that the same is true if Y has an unconditional basis and does not contain c_0 . These striking results are to be compared with another recent theorem, due to S. M. Bates ([B]), according to which for any separable Banach space Y there exists a C^1 -smooth surjection from c_0 onto Y; clearly, such a map cannot be locally compact unless Y is finite-dimensional, by the Baire category theorem.

This note is a by-product of several vain attempts to generalize Hájek's local compactness results to all Banach spaces Y not containing c_0 .

We show that if X, Y are Banach spaces such that Y has finite cotype and X does not have finite cotype, then smooth functions from X into Y have a kind of "harmonic" behaviour (Theorem 1). We also prove that if Y has finite cotype, then smooth functions from c_0 into Y essentially turn weakly convergent sequences into (norm) Cesaro-convergent sequences (Theorem 2). Both results rest on an elementary finite-dimensional lemma (Lemma 1) involving what we have called *pyramidal vectors* of c_0 (Definition 1). Finally, we give a very short proof of Hájek's basic result for scalar-valued functions, which looks rather different (at least in its form) from the original one. This proof is based on the notion of *strong sequential continuity* (Definition 3), which might be of independent interest.

Let us now fix the notation that will be used throughout this note. The letters X, Y will always designate (real) Banach spaces. If Z is a normed space, we denote

©2000 American Mathematical Society

Received by the editors February 19, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46B20.

by B_Z the closed unit ball of Z. For any set $B \subseteq Z$, we denote by $C_u^1(B, Y)$ the set of all maps $f : Z \to Y$ which are C^1 -smooth on some neighbourhood of B with uniformly continuous derivative on B. If ω is a modulus of continuity, we put $C^{1,\omega}(B,Y) = \{f \in C_u^1(B,Y); \forall u, v \in B ||f'(u) - f'(v)|| \le \omega(||u-v||)\}$; and if M > 0, we let $C^{1,\omega,M}(B,Y) = \{f \in C^{1,\omega}(B,Y); ||f'(x)|| \le M$ on B}. Finally, we denote by $(e_i)_{i\ge 0}$ the canonical basis of c_0 , and by c_{00} the linear span of the e_i 's; and if N is a positive integer, we put $l_{\infty}^N = \text{span}\{e_i; 0 \le i \le N-1\}$.

Definition 1. Let K be a positive integer. We say that $a \in c_0$ is a K-pyramidal vector if one can write $a = \sum_{i=1}^{r} \lambda_i \mathbf{1}_{A_i}$, where $r \leq K$, (A_1, \ldots, A_r) is a decreasing sequence of (nonempty) finite intervals of \mathbb{N} such that $\min A_i < \min A_{i+1}$ if $i \leq r-1$, and $\lambda_1, \ldots, \lambda_r \in [0; 1/K]$.

Recall that a Banach space Z is said to have *cotype* q $(2 \le q \le \infty)$ if there is a numerical constant C such that $||\mathbf{z}||_{l_q(Z)} \le C ||\sum \varepsilon_i z_i||_{L_q(Z)}$ for all finite sequences $\mathbf{z} = (z_1, \ldots z_n) \subseteq Z$ (where (ε_i) is the sequence of Rademacher functions).

Lemma 1. Assume that Y has finite cotype q. Let ω be a modulus of continuity and let M > 0. Given a positive integer K and $\varepsilon > 0$, there exists a positive integer N satisfying the following property: for any open set $V \subseteq l_{\infty}^{N}$ such that $0 \in V \subseteq B_{l_{\infty}^{N}}$ and for any $f \in C^{1,\omega,M}(\overline{V}, Y)$, one can find a K-pyramidal vector a such that

$$a \in \partial V$$
 and $||f(a) - f(0)|| < \varepsilon + \omega(1/K).$

Proof. We will use the hypothesis on Y in the following way: for any bounded linear operator $T: c_0 \to Y$ and any positive number α , the number of integers i such that $||Te_i|| \geq \alpha$ does not exceed $C_q^q \frac{||T||^q}{\alpha^q}$, where C_q is the cotype constant of Y. This is easy to check.

Fix a positive integer K and $\varepsilon > 0$.

We choose a sequence of positive integers (N_0, \ldots, N_K) such that for $i \leq K-1$, N_i is "much greater" than N_{i+1} . More precisely, the N_i 's are selected in such a way that

$$\frac{N_0 - C N_1^q / \varepsilon^q}{1 + C N_1^q / \varepsilon^q} \ge 1 + N_1, \ \dots, \ \frac{N_{\kappa^{-1}} - C N_\kappa^q / \varepsilon^q}{1 + C N_\kappa^q / \varepsilon^q} \ge 1 + N_\kappa,$$

where $C = C_q^q M^q$. Finally, we put $N = N_0$.

Now, fix an open set $V \subseteq l_{\infty}^{N}$ such that $0 \in V \subseteq B_{l_{\infty}^{N}}$ and a function $f \in C^{1,\omega,M}(\overline{V},Y)$.

Let us say that a decreasing sequence (A_0, \ldots, A_p) $(0 \le p \le K)$ of subintervals of [0; N] is *admissible* if the following properties are satisfied:

(i) $A_0 = [0; N[$ and each A_i has cardinality N_i .

(ii) For all $i \ge 1$ $[a_{i-1}; a_i] \subseteq V$, where $a_0 = 0$ and $a_l = \frac{1}{K} \sum_{j=1}^{l} \mathbf{1}_{A_j}$ if $l \ge 1$.

(iii) If
$$i \ge 1$$
, then $||f'(a_{i-1}) \cdot e_l|| < \frac{\varepsilon}{N_i}$ for all $l \in A_i$.

Notice that $(A_0) = ([0; N[)$ is admissible, and that there is no admissible sequence of length K + 1, because $V \subseteq B_{l_{\infty}^{N}}$.

Let (A_0, \ldots, A_p) be an admissible sequence of maximal length. Then $p \leq K-1$; hence, by the choice of the sequence (N_0, \ldots, N_K) , it is possible to find an interval $A_{p+1} \subseteq A_p$ of cardinality N_{p+1} such that $\min A_{p+1} > \min A_p$ and

$$\forall l \in A_{p+1} ||f'(a_p). e_l|| < \varepsilon / N_{p+1}.$$

Since (A_0, \ldots, A_{p+1}) cannot be admissible, this implies that the segment $I = [a_p; a_p + \frac{1}{K} \mathbf{1}_{A_{p+1}}]$ is not contained in V; and since $a_p \in V$, I must intersect ∂V .

Let $\lambda = \min\{t \ge 0; a_p + t \mathbf{1}_{A_{p+1}} \in \partial V\}$, and put $a = a_{p+1} = a_p + \lambda \mathbf{1}_{A_{p+1}}$. Since $\lambda \in]0; 1/K]$, *a* is a *K*-pyramidal vector, and of course $a \in \partial V$.

Moreover, if we put $h_i = a_i - a_{i-1}$ $(1 \le i \le p+1)$, then $||f'(a_{i-1}), h_i|| < \varepsilon/K$ and $||h_i|| \le 1/K$ for all *i*, whence

$$||f(a_i) - f(a_{i-1})|| \le ||f'(a_{i-1}) \cdot h_i|| + ||h_i|| \,\omega(||h_i||) < \varepsilon/K + 1/K \,\omega(1/K) \ (1 \le i \le p+1).$$

Therefore, we get

$$||f(a) - f(0)|| \le \sum_{i=1}^{p+1} ||f(a_i) - f(a_{i-1})|| < \varepsilon + \omega(1/K) .$$

Remark. Let us give a geometrical interpretation of the above proof. For simplicity, assume that $V = B_{l_{\infty}^{N}}$. The points a_i satisfy

$$|a_{i+1} - a_i|| = ||h_{i+1}|| = 1/K$$
 and $||a_i|| = i/K$,

so they form a path joining 0 to the unit sphere of c_0 . They are constructed in such a way that the norm of a_i is attained at each point of A_i , so that a_i lies on an edge of i/K. B_{c_0} (because $|A_i| \ge 2$). Therefore, the norm of c_0 is rough at the point a_i . Hence it is possible to select a direction h_{i+1} very close to the kernel of $f'(a_i)$ (so that $f(a_i+h_{i+1})-f(a_i)$ is very small) such that $||a_i+h_{i+1}||-||a_i||$ is large (actually $||a_i+h_{i+1}||-||a_i|| = ||h_{i+1}|| = 1/K$). Moreover, in order to iterate the construction, the direction h_{i+1} should be selected in such a way that $a_{i+1} = a_i + h_{i+1}$ lies on an edge of (i+1)/K. B_{c_0} , which explains the choice of the sequence (N_0, \ldots, N_K) . Summing up, we obtain that $f(a_K) - f(a_0)$ is small and $||a_K|| - ||a_0|| = 1$ is "very" large.

Theorem 1. Assume that Y has finite cotype and that X does not have finite cotype, and let Ω be a bounded open subset of X. Then, for any function $f \in C^1_u(\overline{\Omega}, Y)$, $f(\partial\Omega)$ is dense in $f(\overline{\Omega})$.

Proof. By the Maurey-Pisier theorem, X contains l_{∞}^{n} 's uniformly. Thus, it should be clear that Theorem 1 follows easily from Lemma 1. We give the details anyway. Let $f \in C_{u}^{1}(\overline{\Omega}, Y)$, and denote by ω be the modulus of uniform continuity of f' on

Let $f \in C_u(\Omega, T)$, and denote by ω be the induction of dimension dimension continuity of f on $\overline{\Omega}$. Choose C > 0 such that $\forall x \in \Omega \ x + C B_X \supseteq \Omega$ and let $M = 2C \sup\{||f'(x)||; x \in \overline{\Omega}\}$. Finally, let $\varepsilon > 0$, choose a positive integer K such that $\omega(1/K) < \varepsilon/2$, and let N be an integer satisfying the conclusion of Lemma 1 for ω , M, K and $\varepsilon/2$.

Since X contains l_{∞}^n 's uniformly, we can choose a linear embedding $T: l_{\infty}^n \to X$ such that $||T|| \leq 2C$ and $||T^{-1}|| \leq 1/C$.

Now, let $x_0 \in \Omega$ and put $V = \{ u \in l_{\infty}^N; x_0 + Tu \in \Omega \}.$

The set V is an open neighbourhood of 0 in l_{∞}^N , and it is contained in $B_{l_{\infty}^N}$ because $||T^{-1}|| \leq 1/C$. Moreover, the function \tilde{f} defined by $\tilde{f}(u) = f(x_0 + Tu)$ is in $C^{1,\omega,M}(\overline{V},Y)$. Therefore, by the choice of N, there exists a point $a \in \partial V$ such that $||f(a) - f(0)|| < \varepsilon$. Then $x = x_0 + Ta$ belongs to $\partial \Omega$, and $||f(x) - f(x_0)|| < \varepsilon$. This concludes the proof.

Definition 2. Let N be a positive integer, and let \mathcal{S}_N be the permutation group of $\{0; \ldots; N-1\}$. A function $f: c_0 \to Y$ is said to be \mathcal{S}_N -invariant if for each $\sigma \in \mathcal{S}_N$ and all $x \in c_0$, one has $f(x_{\sigma}) = f(x)$, where $x_{\sigma} = (x_{\sigma(0)}, \ldots, x_{\sigma(N-1)}, x_N, x_{N+1}, \ldots)$.

Lemma 2. Assume that Y has finite cotype. Let ω be a modulus of continuity, and let M > 0. Finally, let K be a positive integer and let $\varepsilon > 0$.

a) Given a finite set $F \subseteq B_{c_{00}}$, there exists a positive integer N satisfying the following property: for every $f \in C^{1,\omega,M}(B_{c_0},Y)$, one can find a normalized K-pyramidal vector a whose support is contained in [0; N] and disjoint from \bigcup supp x, and such that

 $x \in F$

$$\forall x \in F \ ||f(x+a) - f(x)|| < \varepsilon + \omega(1/K).$$

b) Let $F = \{0; e_0\}$. If K is large enough and if N is chosen as in **a**), then $||f(e_0) - f(e_0)| = 0$. $f(0)|| < 3\varepsilon$ for each \mathcal{S}_{N} -invariant $f \in C^{1,\omega,M}(B_{c_{0}},Y)$.

Proof. a) Let $F = \{x_1; \ldots; x_m\}$ be a finite subset of $B_{c_{00}}$, and choose an integer L such that $\bigcup_{i=1}^{m} \operatorname{supp} x_i \subseteq [0; L]$. Let also $\tilde{Y} = l_{\infty}^m(Y)$. Finally, let T be the "right-

shift" operator on c_0 , defined by $T(\sum \alpha_i e_i) = \sum \alpha_i e_{i+1}$.

Then, for any $f \in C^{1,\omega,M}(B_{c_0},Y)$, the function \tilde{f} defined by

$$\tilde{f}(u) = (f(x_1 + T^{L+1}u), \dots, f(x_m + T^{L+1}u))$$

is in $C^{1,\omega,M}(B_{c_0},\tilde{Y})$. Therefore, part **a**) follows from Lemma 1 applied to \tilde{Y} .

b) Choose an integer N satisfying the conclusion of **a**) for $F = \{0; e_0\}$, and let $f \in C^{1,\omega,M}(B_{c_0},Y)$ be \mathcal{S}_N -invariant.

By **a**), one can find a normalized K-pyramidal vector $a = \frac{1}{K} \sum_{i=1}^{K} \mathbf{1}_{A_i}$ supported

by]0; N[such that

$$||f(a) - f(0)||, ||f(e_0 + a) - f(e_0)|| < \varepsilon + \omega(1/K).$$

Let $i_0 = \min A_K$, and put $h = \frac{1}{K} \sum_{i=1}^K e_{l_i}$, where $l_i = \min A_i - 1$ $(1 \le i \le K)$. Then ||h|| = 1/K and $a, a + h \in B_{c_0}$; hence $||f(a + h) - f(a)|| \le M/K$. But $a+h = (a+e_0)_{\sigma}$, where $\sigma \in \mathcal{S}_N$ is the cycle $(0,\ldots,i_0)$. Therefore (by \mathcal{S}_N invariance) $f(a+h) = f(a+e_0)$, whence $||f(a+e_0) - f(a)|| \le M/K$. By the choice of a, it follows that

$$||f(e_0) - f(0)|| \le ||f(e_0) - f(e_0 + a)|| + ||f(e_0 + a) - f(a)|| + ||f(a) - f(0)|| \le M/K + 2(\epsilon + \omega(1/K)).$$

This proves **b**).

Theorem 2. Assume that Y has finite cotype.

a) If $f \in C^1_u(B_{c_0}, Y)$, then the sequence $(f(e_i))$ converges to f(0) in the Cesaro sense.

b) More precisely, given a modulus of continuity ω and positive numbers M, ε , there exists a positive integer N such that $\left\|\frac{1}{n}\sum_{i=0}^{n-1}f(e_i) - f(0)\right\| < \varepsilon$ for all $f \in C^{1,\omega,M}(B_{c_0},Y)$ and all $n \ge N$.

Proof. Let ω be a modulus of continuity, and let M > 0. If $f \in C^{1,\omega,M}(B_{c_0}, Y)$, then, for any positive integer n, the function \tilde{f} defined by $\tilde{f}(x) = \frac{1}{n!} \sum_{\sigma \in S_n} f(x_{\sigma})$ still belongs to $C^{1,\omega,M}(B_{c_0}, Y)$, and it is also S_n -invariant; moreover, $\tilde{f}(0) = f(0)$ and $\tilde{f}(e_0) = \frac{1}{n} \sum_{i=0}^{n-1} f(e_i)$. Thus, Theorem 2 follows from Lemma 2.

Corollary. Assume that Y has finite cotype, and let $f : c_0 \to Y$ be a C^1 -smooth function such that f' is uniformly continuous on bounded sets. Then any sequence $(x_i) \subseteq c_0$ weakly converging to some $x \in c_0$ has a subsequence (x'_i) such that $f(x'_i) \to f(x)$ in the Cesaro sense.

Remark. Clearly, the conclusion of Theorem 2 b) holds for any subsequence of (e_i) , with the *same* integer N.

It is very likely that Theorem 2 is far from being best possible. An "optimal" statement could be the following: if Y does not contain c_o and $f \in C_u^1(B_{c_0}, Y)$, then f turns weak-Cauchy sequences from B_{c_0} into norm convergent sequences in Y.

Notice that if Y has an unconditional basis, then the above statement is indeed true, as shown in [H2].

In the same spirit, given a pair of Banach spaces (X, Y) and a function $f \in C^1(B_X, Y)$, one may consider the following two properties:

(1) f turns Cauchy sequences (from B_X) for the "weak" topology generated by $\mathcal{L}(X,Y)$ into (norm) convergent sequences.

(2) $f'(B_X)$ is a relatively compact subset of $\mathcal{L}(X,Y)$.

It follows at once from the mean-value theorem that property (2) is stronger than (1). Moreover, it is observed in [H2] that when $Y = \mathbb{R}$, (1) are (2) are equivalent provided X does not contain l_1 and f' is uniformly continuous on B_X . Finally, if $Y = \mathbb{R}$ and $X = c_0$, then both properties are true; this is the main result of [H1].

In the remainder of this note, we give a short proof of a slightly weaker form of this last result (Theorem 3 below).

For the sake of readability, we will impose "global" smoothness conditions on the functions we are dealing with. Accordingly, we shall say that a function $f : c_0 \to Y$ is *smooth* if f is C^1 -smooth and f' is uniformly continuous on bounded sets.

Definition 3. Let (G, +) be an abelian topological group, and let B be a subset of G. We say that a function $f : G \to Y$ is strongly sequentially continuous in B if for every sequence $(x_n) \subseteq B$ and every sequence (h_i) converging to 0 in G, one has

$$\lim_{i \to \infty} \left(\liminf_{n \to \infty} ||f(x_n + h_i) - f(x_n)|| \right) = 0.$$

It is easily checked that the definition of strong sequential continuity can be reformulated as follows: a function $f: G \to Y$ is strongly sequentially continuous in a set B if and only if, for each sequence (h_i) converging to 0 in G, the sequence of functions (f_n) defined by $f_n(x) = \inf\{||f(x+h_i) - f(x)||; i \leq n\}$ converges to 0 uniformly on B.

This definition may look a bit artificial. It is "justified" by the following lemma.

Lemma 3. Let G be an abelian topological group and let $f : G \to Y$. Assume that f is strongly sequentially continuous in some set $B \subseteq G$. Then the following statements hold.

a) f turns Cauchy sequences from B into (norm) convergent sequences in Y.

b) If, in addition, every sequence from B admits a Cauchy subsequence, then f_{1B} is uniformly sequentially continuous on B.

Proof. **a)** By contradiction, assume that there exists a Cauchy sequence $(x_i) \subseteq B$ such that $(f(x_i))$ is not convergent. Then we can find a positive number ε and two subsequences (y_n) , (z_m) of (x_i) such that $\forall n, m \ge 0 ||f(y_n) - f(z_m)|| \ge \varepsilon$; this is obvious if the set $\{f(x_i); i \ge 0\}$ is not relatively compact in Y (because in this case, $(f(x_i))$ admits an ε -separated subsequence), and obvious as well if it is, because in that case, $(f(x_i))$ has at least two cluster points.

Now, for all $i, n, m \ge 0$, one has

$$||f(y_n) - f[y_n + (z_m - x_i)]|| + ||f[z_m + (y_n - x_i)] - f(z_m)|| \ge \varepsilon.$$

Thus, by Ramsey's theorem for triples of integers, we may assume that either $\forall i, n, m \in \mathbb{N}, m < i < n, ||f(y_n) - f[y_n + (z_m - x_i)]|| \ge \varepsilon/2$, or $\forall i, n, m \in \mathbb{N}, m < i < n, ||f[z_m + (y_n - x_i)] - f(z_m)|| \ge \varepsilon/2$. In the first case, we get in particular $\liminf_{n \to \infty} ||f(y_n) - f[y_n + (z_{i-1} - x_i)]|| \ge \varepsilon/2$ for all $i \ge 1$, which is impossible because $(z_{i-1} - x_i) \to 0$ as $i \to \infty$ and f is strongly sequentially continuous in B. In the second case, we get $||f[z_0 + (y_{i+1} - x_i)] - f(z_0)|| \ge \varepsilon/2$ for all $i \ge 1$, which is again impossible because f is sequentially continuous at z_0 . This proves **a**).

Part b) is a straightforward consequence of a).

The following remarks will not be used in the proof of Theorem 3.

Remarks. **1.** Clearly, strong sequential continuity in $B \subseteq G$ implies sequential continuity at each point of B. Moreover, it is not difficult to check that if $f : \mathbb{R} \to \mathbb{R}$ is strongly sequentially continuous in \mathbb{R} , then $\liminf_{|x|\to\infty} |f(x)/x| < +\infty$. Thus, strong sequential continuity in \mathbb{R} is a stronger property than usual continuity.

2. It is plain that any uniformly sequentially continuous function $f : G \to Y$ is strongly sequentially continuous in G. On the other hand, Lemma 3 implies that if $f : \mathbb{R} \to Y$ is strongly sequentially continuous in some bounded set $B \subseteq \mathbb{R}$, then $f_{|B}$ is uniformly continuous on B. More generally, if G = (X, w), where X is a Banach space not containing l_1 , then strong sequential continuity in bounded sets is equivalent to sequential uniform continuity on bounded sets, by Rosenthal's l_1 -theorem.

3. We are unable to determine whether strong sequential continuity in \mathbb{R} is equivalent to uniform continuity.

4. The following example shows that even in very simple groups, strong sequential continuity does not imply uniform continuity.

Let \mathbb{D} be the group of dyadic real numbers $(\mathbb{D} = \{k/2^p; k \in \mathbb{Z}, p \in \mathbb{N}\})$, and let $f : \mathbb{D} \to \mathbb{R}$ be the even function defined on $\mathbb{D} \cap [n, n+1]$ $(n \in \mathbb{N})$ by

3606

 $f(x) = \sin(\pi x) \sin(2^n \pi x)$. It is easy to check that f is not uniformly continuous on \mathbb{D} . Yet, we claim that f is strongly sequentially continuous in \mathbb{D} .

To show this, let us fix $\varepsilon > 0$ and a sequence $(h_i) \subseteq \mathbb{D}$ converging to 0. It is enough to prove that for large enough n, $\sup_{x\in\mathbb{D}_+}\inf_{i\leq n}|f(x+h_i)-f(x)|\leq 2\pi\varepsilon$ (where

 $\mathbb{D}_{+} = \mathbb{D} \cap [0; +\infty[).$

First, we choose n_0 such that $|h_{n_0}| < \varepsilon/2$, and we write $h_{n_0} = k_0/2^{p_0}$ $(p_0 \in \mathbb{N},$ $k_0 \in \mathbb{Z}$).

Since f is uniformly continuous around $[0; p_0 + 1]$, there exists an integer n_1 such that

$$\forall x \in \mathbb{D} \cap [0; p_0 + 1] | f(x + h_{n_1}) - f(x)| \le \varepsilon.$$

Next, if $x \in [n - \varepsilon/2, n + \varepsilon/2]$ for some $n \in \mathbb{N}$, then $x + h_{n_0} \in [n - \varepsilon, n + \varepsilon]$; so

$$|f(x+h_{n_0})-f(x)| \le |f(x+h_{n_0})|+|f(x)| \le 2\pi\varepsilon$$

for all $x \in \mathbb{D}_+ \cap \left(\bigcup_{n \in \mathbb{N}} [n - \varepsilon/2, n + \varepsilon/2] \right)$.

Finally, if
$$x \in \mathbb{D}_+ \setminus \left([0; p_0 + 1] \cup \bigcup_{n \in \mathbb{N}} [n - \varepsilon/2, n + \varepsilon/2] \right)$$
, then there exists $n \ge p_0 + 1$

such that both x and $x + h_{n_0}$ lie in [n, n+1]. Since $n \ge p_0 + 1$, the function $t \mapsto \sin(2^n \pi t)$ is h_{n_0} periodic; hence

$$f(x+h_{n_0}) - f(x) = \sin(2^n \pi x) \left[\sin \pi (x+h_{n_0}) - \sin(\pi x) \right].$$

Thus

$$|f(x+h_{n_0}) - f(x)| \le |\sin \pi (x+h_{n_0}) - \sin(\pi x)| \le \pi \varepsilon/2$$

for all $x \in \mathbb{D}_+ \setminus \left([0; p_0 + 1] \cup \bigcup_{n \in \mathbb{N}} [n - \varepsilon/2, n + \varepsilon/2] \right)$. Therefore, if $n \ge \operatorname{Max}(n_0, n_1)$, we have, for all $x \in \mathbb{D}_+$,

$$\inf_{i \le n} |f(x+h_i) - f(x)| \le \operatorname{Max}(\varepsilon, \pi \varepsilon/2, 2\pi \varepsilon) \le 2\pi \varepsilon.$$

After this detour, we can now state and prove the following result:

Theorem 3 (Hájek). Let $f : c_0 \to \mathbb{R}$ be a smooth function. Then f is uniformly continuous on bounded sets when c_0 is equipped with its weak topology.

Proof. The weak topology is metrizable on any bounded subset of c_0 , and each bounded sequence in c_0 admits a weak-Cauchy subsequence; hence, by Lemma 3, we may content ourselves with proving that f is strongly sequentially continuous in every bounded subset of $G = (c_0, w)$. Therefore, we have to show that if $(h_i) \subseteq c_0$ is weakly null, then $\inf\{||f(x+h_i) - f(x)||; i \le n\} \to 0$ uniformly on bounded sets. Let us fix a weakly null sequence (h_i) and a bounded set $B \subseteq c_0$.

By extracting a subsequence if necessary, we may assume that there exists a bounded linear operator $T: c_0 \to c_0$ such that $T(e_i) = h_i$ for all i.

Let ω_0 be the modulus of uniform continuity of f' on $B + TB_{c_0}$, and let $M_0 =$ $\sup\{||f'(w)||; w \in B + TB_{c_0}\}.$ Then, for every $x \in B$, the function f_x defined by $f_x(u) = f(x + Tu)$ is in $C^{1,\omega,M}(B_{c_0},\mathbb{R})$ where $\omega = ||T||.\omega_0$ and M = ||T||.M; hence, by Theorem 2 (and the remark following it),

$$\lim_{n \to \infty} \left(\sup \left\{ \left| \frac{1}{n} \sum_{i \in F} \left[f(x+h_i) - f(x) \right] \right|; \ F \subseteq \mathbb{N}, \ |F| = n \right\} \right) = 0 \text{ uniformly on } B.$$

Since f is real-valued, this concludes the proof.

Corollary (Hájek). If $f : c_0 \to \mathbb{R}$ is smooth, then f' is a compact map, which means that for every bounded set $B \subseteq c_0$, f'(B) is relatively compact in l_1 .

Proof. We could apply the result mentioned above about the equivalence of properties (1) and (2), but we give a direct proof for completeness.

Let $f : c_0 \to \mathbb{R}$ be a smooth function, and assume that for some bounded $B \subseteq c_0$, f'(B) is not relatively compact in l_1 . Then one can find a positive number ε , a sequence $(x_i) \subseteq B$ and a sequence $(h_i) \subseteq B_{c_0}$, such that the h_i 's are disjointly supported and $|f'(x_i), h_i| \geq \varepsilon$ for all i.

Let ω be the modulus of (uniform) continuity of f' on $B + B_{c_0}$, and fix $\alpha \in]0; 1]$. Then, for each $i \geq 0$, one can write

$$|f(x_i + \alpha h_i) - f(x_i)| \ge |f'(x_i). (\alpha h_i)| - ||\alpha h_i|| \omega(||\alpha h_i||)$$
$$\ge \alpha (\varepsilon - \omega(\alpha)).$$

Since (h_i) is weakly null, this contradicts Theorem 3 if α is small enough.

To conclude this note, let us mention still another innocent question.

Theorem 3 implies that any smooth function $f : c_0 \to \mathbb{R}$ can be (uniquely) extended to a function $\tilde{f} : l_{\infty} \to \mathbb{R}$ which is w^* -continuous on bounded sets. It would be interesting to know if such an extension inherits any smoothness property from f.

References

- [B] S. M. Bates, On smooth, nonlinear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220. MR 98i:58016
- [H1] P. Hájek, Smooth functions on c₀, Israel J. Math. 104 (1998), 17-27. MR 99d:46063
- [H2] P. Hájek, Smooth functions on C(K), Israel J. Math. 107 (1998), 237-252. CMP 99:05

UNIVERSITÉ BORDEAUX 1, 351, COURS DE LA LIBÉRATION, 33405 TALENCE CEDEX, FRANCE *E-mail address*: deville@math.u-bordeaux.fr

E-mail address: matheron@math.u-bordeaux.fr

3608