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PYRAMIDAL VECTORS AND SMOOTH FUNCTIONS
ON BANACH SPACES

R. DEVILLE AND E. MATHERON

(Communicated by Dale Alspach)

Abstract. We prove that if X, Y are Banach spaces such that Y has non-
trivial cotype and X has trivial cotype, then smooth functions from X into
Y have a kind of “harmonic” behaviour. More precisely, we show that if Ω
is a bounded open subset of X and f : Ω → Y is C1- smooth with uniformly
continuous Fréchet derivative, then f(∂Ω) is dense in f(Ω). We also give a
short proof of a recent result of P. Hájek.

This note is motivated by recent results of P. Hájek ([H1], [H2]) concerning
(Fréchet) smooth nonlinear operators on the space c0.

In [H1], Hájek proved (among other things) that if f : c0 → R is a C1- smooth
map with uniformly continuous derivative on Bc0 , then f ′(Bc0) is a relatively com-
pact subset of l1. From this, he deduced that if Y is a Banach space with non trivial
type and f : c0 → Y is C1- smooth with locally uniformly continuous derivative,
then f is locally compact, which means that each point x ∈ c0 has a neighbourhood
V such that f(V ) is relatively compact in Y . In [H2], he also proved that the same
is true if Y has an unconditional basis and does not contain c0. These striking
results are to be compared with another recent theorem, due to S. M. Bates ([B]),
according to which for any separable Banach space Y there exists a C1- smooth
surjection from c0 onto Y ; clearly, such a map cannot be locally compact unless Y
is finite-dimensional, by the Baire category theorem.

This note is a by-product of several vain attempts to generalize Hájek’s local
compactness results to all Banach spaces Y not containing c0.

We show that if X , Y are Banach spaces such that Y has finite cotype and X
does not have finite cotype, then smooth functions from X into Y have a kind of
“harmonic” behaviour (Theorem 1). We also prove that if Y has finite cotype,
then smooth functions from c0 into Y essentially turn weakly convergent sequences
into (norm) Cesaro-convergent sequences (Theorem 2). Both results rest on an
elementary finite-dimensional lemma (Lemma 1) involving what we have called
pyramidal vectors of c0 (Definition 1). Finally, we give a very short proof of Hájek’s
basic result for scalar-valued functions, which looks rather different (at least in its
form) from the original one. This proof is based on the notion of strong sequential
continuity (Definition 3), which might be of independent interest.

Let us now fix the notation that will be used throughout this note. The letters
X, Y will always designate (real) Banach spaces. If Z is a normed space, we denote
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by BZ the closed unit ball of Z. For any set B ⊆ Z, we denote by C1
u (B, Y ) the

set of all maps f : Z → Y which are C1- smooth on some neighbourhood of B
with uniformly continuous derivative on B. If ω is a modulus of continuity, we
put C1,ω (B, Y ) =

{
f ∈ C1

u (B, Y ); ∀u, v ∈ B ||f ′(u)− f ′(v)|| ≤ ω(||u − v||)
}

; and
if M > 0, we let C1,ω,M (B, Y ) = {f ∈ C1,ω (B, Y ); ||f ′(x)|| ≤ M on B}. Finally,
we denote by (ei)i≥0 the canonical basis of c0, and by c00 the linear span of the ei’s;
and if N is a positive integer, we put lN∞ = span{ei; 0 ≤ i ≤ N − 1}.

Definition 1. Let K be a positive integer. We say that a ∈ c0 is a K-pyramidal

vector if one can write a =
r∑
i=1

λi 1Ai , where r ≤ K, (A1, . . . Ar) is a decreasing

sequence of (nonempty) finite intervals of N such that minAi < minAi+1 if i ≤ r−1,
and λ1, . . . , λr ∈ ]0; 1/K].

Recall that a Banach space Z is said to have cotype q ( 2 ≤ q ≤ ∞ ) if there is a
numerical constant C such that ||z||lq(Z) ≤ C ||

∑
εi zi||Lq(Z) for all finite sequences

z = (z1, . . . zn) ⊆ Z (where (εi) is the sequence of Rademacher functions).

Lemma 1. Assume that Y has finite cotype q. Let ω be a modulus of continuity
and let M > 0. Given a positive integer K and ε > 0, there exists a positive integer
N satisfying the following property: for any open set V ⊆ lN∞ such that 0 ∈ V ⊆ BlN∞
and for any f ∈ C1,ω,M (V , Y ), one can find a K-pyramidal vector a such that

a ∈ ∂V and ||f(a)− f(0)|| < ε+ ω(1/K).

Proof. We will use the hypothesis on Y in the following way: for any bounded linear
operator T : c0 → Y and any positive number α, the number of integers i such that

||Tei|| ≥ α does not exceed Cqq
||T ||q
αq

, where Cq is the cotype constant of Y . This
is easy to check.

Fix a positive integer K and ε > 0.
We choose a sequence of positive integers (N0, . . . , NK) such that for i ≤ K − 1,

Ni is “much greater” than Ni+1. More precisely, the Ni’s are selected in such a
way that

N0 − C N q
1 /ε

q

1 + C N q
1/ε

q
≥ 1 +N1 , . . . ,

NK−1 − C N q
K/ε

q

1 + C N q
K/εq

≥ 1 +NK ,

where C = CqqM
q. Finally, we put N = N0.

Now, fix an open set V ⊆ lN∞ such that 0 ∈ V ⊆ BlN∞ and a function f ∈
C1,ω,M (V , Y ).

Let us say that a decreasing sequence (A0, . . . Ap) (0 ≤ p ≤ K) of subintervals
of [0;N [ is admissible if the following properties are satisfied:

(i) A0 = [0;N [ and each Ai has cardinality Ni .

(ii) For all i ≥ 1 [ai−1; ai] ⊆ V , where a0 = 0 and al =
1
K

l∑
j=1

1Aj if l ≥ 1 .

(iii) If i ≥ 1, then ||f ′(ai−1). el|| <
ε

Ni
for all l ∈ Ai.

Notice that (A0) = ([0;N [) is admissible, and that there is no admissible sequence
of length K + 1, because V ⊆ BlN∞ .

Let (A0, . . . , Ap) be an admissible sequence of maximal length. Then p ≤ K−1;
hence, by the choice of the sequence (N0, . . . , NK), it is possible to find an interval



PYRAMIDAL VECTORS AND SMOOTH FUNCTIONS ON BANACH SPACES 3603

Ap+1 ⊆ Ap of cardinality Np+1 such that minAp+1 > minAp and

∀l ∈ Ap+1 ||f ′(ap). el|| < ε/Np+1 .

Since (A0, . . . Ap+1) cannot be admissible, this implies that the segment I = [ap; ap+
1
K

1Ap+1] is not contained in V ; and since ap ∈ V , I must intersect ∂V .

Let λ = min{t ≥ 0; ap + t1Ap+1 ∈ ∂V }, and put a = ap+1 = ap + λ1Ap+1 .
Since λ ∈]0; 1/K], a is a K-pyramidal vector, and of course a ∈ ∂V .
Moreover, if we put hi = ai − ai−1 (1 ≤ i ≤ p+ 1), then ||f ′(ai−1). hi|| < ε/K

and ||hi|| ≤ 1/K for all i, whence

||f(ai)− f(ai−1)|| ≤ ||f ′(ai−1). hi||+ ||hi||ω(||hi||)
< ε/K + 1/K ω(1/K) (1 ≤ i ≤ p+ 1).

Therefore, we get

||f(a)− f(0)|| ≤
p+1∑
i=1

||f(ai)− f(ai−1)||

< ε+ ω(1/K) .

Remark. Let us give a geometrical interpretation of the above proof. For simplicity,
assume that V = BlN∞ . The points ai satisfy

‖ai+1 − ai‖ = ‖hi+1‖ = 1/K and ‖ai‖ = i/K,

so they form a path joining 0 to the unit sphere of c0. They are constructed in such
a way that the norm of ai is attained at each point of Ai, so that ai lies on an edge
of i/K.Bc0 (because |Ai| ≥ 2). Therefore, the norm of c0 is rough at the point ai.
Hence it is possible to select a direction hi+1 very close to the kernel of f ′(ai) (so
that f(ai+hi+1)−f(ai) is very small) such that ‖ai+hi+1‖−‖ai‖ is large (actually
‖ai+hi+1‖−‖ai‖ = ‖hi+1‖ = 1/K). Moreover, in order to iterate the construction,
the direction hi+1 should be selected in such a way that ai+1 = ai + hi+1 lies on
an edge of (i+ 1)/K.Bc0, which explains the choice of the sequence (N0, . . . , NK).
Summing up, we obtain that f(aK)− f(a0) is small and ‖aK‖− ‖a0‖ = 1 is “very”
large.

Theorem 1. Assume that Y has finite cotype and that X does not have finite
cotype, and let Ω be a bounded open subset of X. Then, for any function f ∈
C1
u(Ω, Y ), f(∂Ω) is dense in f(Ω).

Proof. By the Maurey-Pisier theorem, X contains ln∞’s uniformly. Thus, it should
be clear that Theorem 1 follows easily from Lemma 1. We give the details anyway.

Let f ∈ C1
u(Ω, Y ), and denote by ω be the modulus of uniform continuity of f ′ on

Ω. Choose C > 0 such that ∀x ∈ Ω x+C BX ⊇ Ω and let M = 2C sup{||f ′(x)||; x ∈
Ω}. Finally, let ε > 0, choose a positive integer K such that ω(1/K) < ε/2, and
let N be an integer satisfying the conclusion of Lemma 1 for ω, M , K and ε/2.

Since X contains ln∞’s uniformly, we can choose a linear embedding T : lN∞ → X
such that ||T || ≤ 2C and ||T−1|| ≤ 1/C.

Now, let x0 ∈ Ω and put V = {u ∈ lN∞; x0 + Tu ∈ Ω}.
The set V is an open neighbourhood of 0 in lN∞, and it is contained in BlN∞

because ||T−1|| ≤ 1/C. Moreover, the function f̃ defined by f̃(u) = f(x0 + Tu) is
in C1,ω,M (V , Y ). Therefore, by the choice of N , there exists a point a ∈ ∂V such
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that ||f̃(a)− f̃(0)|| < ε. Then x = x0 +Ta belongs to ∂Ω, and ||f(x)− f(x0)|| < ε .
This concludes the proof.

Definition 2. Let N be a positive integer, and let SN be the permutation group of
{0; . . . ;N − 1}. A function f : c0 → Y is said to be SN -invariant if for each σ ∈ SN
and all x ∈ c0, one has f(xσ) = f(x), where xσ = (xσ(0), . . . , xσ(N−1), xN , xN+1, . . . ).

Lemma 2. Assume that Y has finite cotype. Let ω be a modulus of continuity, and
let M > 0. Finally, let K be a positive integer and let ε > 0.

a) Given a finite set F ⊆ Bc00 , there exists a positive integer N satisfying
the following property: for every f ∈ C1,ω,M (Bc0 , Y ), one can find a normal-
ized K-pyramidal vector a whose support is contained in [0;N [ and disjoint from⋃
x∈F

suppx, and such that

∀x ∈ F ||f(x+ a)− f(x)|| < ε+ ω(1/K).

b) Let F ={0; e0}. If K is large enough and if N is chosen as in a), then ||f(e0)−
f(0)|| < 3 ε for each SN -invariant f ∈ C1,ω,M (Bc0 , Y ).

Proof. a) Let F = {x1; . . . ;xm} be a finite subset of Bc00 , and choose an integer

L such that
m⋃
i=1

suppxi ⊆ [0;L]. Let also Ỹ = lm∞ (Y ). Finally, let T be the “right-

shift” operator on c0, defined by T
(∑

αi ei
)

=
∑

αi ei+1.

Then, for any f ∈ C1,ω,M (Bc0 , Y ), the function f̃ defined by

f̃(u) =
(
f(x1 + T L+1 u), . . . , f(xm + T L+1 u)

)
is in C1,ω,M (Bc0 , Ỹ ). Therefore, part a) follows from Lemma 1 applied to Ỹ .

b) Choose an integer N satisfying the conclusion of a) for F = {0; e0}, and let
f ∈ C1,ω,M (Bc0 , Y ) be SN -invariant.

By a), one can find a normalized K-pyramidal vector a =
1
K

K∑
i=1

1Ai supported

by ]0;N [ such that

||f(a)− f(0)|| , ||f(e0 + a)− f(e0)|| < ε+ ω(1/K) .

Let i0 = minAK, and put h =
1
K

K∑
i=1

eli , where li = minAi − 1 (1 ≤ i ≤ K).

Then ||h|| = 1/K and a, a + h ∈ Bc0 ; hence ||f(a + h) − f(a)|| ≤ M/K. But
a + h = (a + e0)σ, where σ ∈ SN is the cycle (0, . . . , i0). Therefore (by SN -
invariance) f(a+h) = f(a+e0), whence ||f(a+e0)−f(a)|| ≤M/K. By the choice
of a, it follows that

||f(e0)− f(0)|| ≤ ||f(e0)− f(e0 + a)||+ ||f(e0 + a)− f(a)||+ ||f(a)− f(0)||
≤M/K + 2

(
ε+ ω(1/K)

)
.

This proves b).

Theorem 2. Assume that Y has finite cotype.
a) If f ∈ C1

u (Bc0 , Y ), then the sequence
(
f(ei)

)
converges to f(0) in the Cesaro

sense.
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b) More precisely, given a modulus of continuity ω and positive numbers M ,

ε, there exists a positive integer N such that
∥∥∥ 1
n

n−1∑
i=0

f(ei) − f(0)
∥∥∥ < ε for all

f ∈ C1,ω,M (Bc0 , Y ) and all n ≥ N .

Proof. Let ω be a modulus of continuity, and let M > 0. If f ∈ C1,ω,M (Bc0 , Y ),

then, for any positive integer n, the function f̃ defined by f̃(x) =
1
n!

∑
σ∈Sn

f(xσ)

still belongs to C1,ω,M (Bc0 , Y ), and it is also Sn-invariant; moreover, f̃(0) = f(0)

and f̃(e0) =
1
n

n−1∑
i=0

f(ei). Thus, Theorem 2 follows from Lemma 2.

Corollary. Assume that Y has finite cotype, and let f : c0 → Y be a C1-smooth
function such that f ′ is uniformly continuous on bounded sets. Then any sequence
(xi) ⊆ c0 weakly converging to some x ∈ c0 has a subsequence (x′i) such that f(x′i)→
f(x) in the Cesaro sense.

Remark. Clearly, the conclusion of Theorem 2 b) holds for any subsequence of (ei),
with the same integer N .

It is very likely that Theorem 2 is far from being best possible. An “optimal”
statement could be the following: if Y does not contain co and f ∈ C1

u (Bc0 , Y ),
then f turns weak-Cauchy sequences from Bc0 into norm convergent sequences in
Y .

Notice that if Y has an unconditional basis, then the above statement is indeed
true, as shown in [H2].

In the same spirit, given a pair of Banach spaces (X,Y ) and a function f ∈
C1(BX , Y ), one may consider the following two properties:

(1) f turns Cauchy sequences (from BX) for the “weak” topology generated by
L(X,Y ) into (norm) convergent sequences.

(2) f ′(BX) is a relatively compact subset of L(X,Y ).
It follows at once from the mean-value theorem that property (2) is stronger

than (1). Moreover, it is observed in [H2] that when Y = R, (1) are (2) are
equivalent provided X does not contain l1 and f ′ is uniformly continuous on BX .
Finally, if Y = R and X = c0, then both properties are true; this is the main result
of [H1].

In the remainder of this note, we give a short proof of a slightly weaker form of
this last result (Theorem 3 below).

For the sake of readability, we will impose “global” smoothness conditions on the
functions we are dealing with. Accordingly, we shall say that a function f : c0 → Y
is smooth if f is C1-smooth and f ′ is uniformly continuous on bounded sets.

Definition 3. Let (G,+) be an abelian topological group, and let B be a subset
of G. We say that a function f : G→ Y is strongly sequentially continuous in B if
for every sequence (xn) ⊆ B and every sequence (hi) converging to 0 in G, one has

lim
i→∞

(
lim inf
n→∞

||f(xn + hi)− f(xn)||
)

= 0.

It is easily checked that the definition of strong sequential continuity can be
reformulated as follows: a function f : G → Y is strongly sequentially continuous
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in a set B if and only if, for each sequence (hi) converging to 0 in G, the sequence
of functions (fn) defined by fn(x) = inf{||f(x+ hi)− f(x)||; i ≤ n} converges to 0
uniformly on B.

This definition may look a bit artificial. It is “justified” by the following lemma.

Lemma 3. Let G be an abelian topological group and let f : G → Y . Assume
that f is strongly sequentially continuous in some set B ⊆ G. Then the following
statements hold.

a) f turns Cauchy sequences from B into (norm) convergent sequences in Y .
b) If, in addition, every sequence from B admits a Cauchy subsequence, then

f|B is uniformly sequentially continuous on B.

Proof. a) By contradiction, assume that there exists a Cauchy sequence (xi) ⊆ B
such that (f(xi)) is not convergent. Then we can find a positive number ε and two
subsequences (yn), (zm) of (xi) such that ∀n,m ≥ 0 ||f(yn) − f(zm)|| ≥ ε; this is
obvious if the set {f(xi); i ≥ 0} is not relatively compact in Y (because in this case,
(f(xi)) admits an ε-separated subsequence), and obvious as well if it is, because in
that case, (f(xi)) has at least two cluster points.

Now, for all i, n,m ≥ 0, one has

||f(yn)− f [yn + (zm − xi)]||+ ||f [zm + (yn − xi)]− f(zm)|| ≥ ε.
Thus, by Ramsey’s theorem for triples of integers, we may assume that either
∀i, n,m ∈ N, m < i < n, ‖f(yn) − f [yn + (zm − xi)]‖ ≥ ε/2, or ∀i, n,m ∈ N,
m < i < n, ‖f [zm+(yn−xi)]−f(zm)‖ ≥ ε/2. In the first case, we get in particular
lim inf
n→∞

‖f(yn)− f [yn+ (zi−1−xi)]‖ ≥ ε/2 for all i ≥ 1, which is impossible because

(zi−1 − xi) → 0 as i → ∞ and f is strongly sequentially continuous in B. In the
second case, we get ‖f [z0 + (yi+1 − xi)]− f(z0)‖ ≥ ε/2 for all i ≥ 1, which is again
impossible because f is sequentially continuous at z0. This proves a).

Part b) is a straightforward consequence of a).

The following remarks will not be used in the proof of Theorem 3.

Remarks. 1. Clearly, strong sequential continuity in B ⊆ G implies sequential
continuity at each point of B. Moreover, it is not difficult to check that if f : R→ R
is strongly sequentially continuous in R, then lim inf

|x|→∞
|f(x)/x| < +∞. Thus, strong

sequential continuity in R is a stronger property than usual continuity.
2. It is plain that any uniformly sequentially continuous function f : G → Y

is strongly sequentially continuous in G . On the other hand, Lemma 3 implies
that if f : R→ Y is strongly sequentially continuous in some bounded set B ⊆ R,
then f|B is uniformly continuous on B. More generally, if G = (X,w), where X
is a Banach space not containing l1, then strong sequential continuity in bounded
sets is equivalent to sequential uniform continuity on bounded sets, by Rosenthal’s
l1-theorem.

3. We are unable to determine whether strong sequential continuity in R is
equivalent to uniform continuity.

4. The following example shows that even in very simple groups, strong sequen-
tial continuity does not imply uniform continuity.

Let D be the group of dyadic real numbers
(
D = {k/2p; k ∈ Z, p ∈ N}

)
,

and let f : D → R be the even function defined on D ∩ [n, n + 1] (n ∈ N) by
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f(x) = sin(πx) sin(2nπx). It is easy to check that f is not uniformly continuous on
D. Yet, we claim that f is strongly sequentially continuous in D.

To show this, let us fix ε > 0 and a sequence (hi) ⊆ D converging to 0. It is
enough to prove that for large enough n, sup

x∈D+

inf
i≤n
|f(x+ hi)− f(x)| ≤ 2πε (where

D+ = D ∩ [0; +∞[).
First, we choose n0 such that |hn0 | < ε/2, and we write hn0 = k0/2p0 (p0 ∈ N,

k0 ∈ Z).
Since f is uniformly continuous around [0; p0 +1], there exists an integer n1 such

that

∀x ∈ D ∩ [0; p0 + 1] |f(x+ hn1)− f(x)| ≤ ε .

Next, if x ∈ [n− ε/2, n+ ε/2] for some n ∈ N, then x+ hn0 ∈ [n− ε, n+ ε]; so

|f(x+ hn0)− f(x)| ≤ |f(x+ hn0)|+ |f(x)| ≤ 2πε

for all x ∈ D+ ∩
(⋃
n∈N

[n− ε/2, n+ ε/2]
)
.

Finally, if x ∈ D+\
(

[0; p0+1]∪
⋃
n∈N

[n−ε/2, n+ε/2]
)

, then there exists n ≥ p0+1

such that both x and x + hn0 lie in [n, n + 1]. Since n ≥ p0 + 1, the function
t 7→ sin(2nπt) is hn0 periodic; hence

f(x+ hn0)− f(x) = sin(2nπx)
[
sinπ(x + hn0)− sin(πx)

]
.

Thus

|f(x+ hn0)− f(x)| ≤ | sinπ(x + hn0)− sin(πx)| ≤ πε/2

for all x ∈ D+ \
(

[0; p0 + 1] ∪
⋃
n∈N

[n− ε/2, n+ ε/2]
)
.

Therefore, if n ≥Max(n0, n1), we have, for all x ∈ D+,

inf
i≤n
|f(x+ hi)− f(x)| ≤ Max(ε, πε/2, 2πε) ≤ 2πε .

After this detour, we can now state and prove the following result:

Theorem 3 (Hájek). Let f : c0 → R be a smooth function. Then f is uniformly
continuous on bounded sets when c0 is equipped with its weak topology.

Proof. The weak topology is metrizable on any bounded subset of c0, and each
bounded sequence in c0 admits a weak-Cauchy subsequence; hence, by Lemma 3,
we may content ourselves with proving that f is strongly sequentially continuous in
every bounded subset of G = (c0, w). Therefore, we have to show that if (hi) ⊆ c0

is weakly null, then inf{||f(x+hi)− f(x)||; i ≤ n} → 0 uniformly on bounded sets.
Let us fix a weakly null sequence (hi) and a bounded set B ⊆ c0.
By extracting a subsequence if necessary, we may assume that there exists a

bounded linear operator T : c0 → c0 such that T (ei) = hi for all i.
Let ω0 be the modulus of uniform continuity of f ′ on B + TBc0 , and let M0 =

sup{||f ′(w)||; w ∈ B + TBc0}. Then, for every x ∈ B, the function fx defined by
fx(u) = f(x + Tu) is in C1,ω,M (Bc0 ,R) where ω = ||T ||. ω0 and M = ||T ||.M ;
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hence, by Theorem 2 (and the remark following it),

lim
n→∞

(
sup
{ ∣∣∣ 1
n

∑
i∈F

[f(x+ hi)− f(x)]
∣∣∣ ; F ⊆ N, |F | = n

})
= 0 uniformly on B .

Since f is real-valued, this concludes the proof.

Corollary (Hájek). If f : c0 → R is smooth, then f ′ is a compact map, which
means that for every bounded set B ⊆ c0, f ′(B) is relatively compact in l1.

Proof. We could apply the result mentioned above about the equivalence of prop-
erties (1) and (2), but we give a direct proof for completeness.

Let f : c0 → R be a smooth function, and assume that for some bounded B ⊆ c0,
f ′(B) is not relatively compact in l1. Then one can find a positive number ε, a
sequence (xi) ⊆ B and a sequence (hi) ⊆ Bc0 , such that the hi’s are disjointly
supported and |f ′(xi). hi| ≥ ε for all i.

Let ω be the modulus of (uniform) continuity of f ′ on B+Bc0 , and fix α ∈]0; 1].
Then, for each i ≥ 0, one can write

|f(xi + αhi)− f(xi)| ≥ |f ′(xi). (αhi)| − ||αhi||ω(||αhi||)
≥ α (ε− ω(α)).

Since (hi) is weakly null, this contradicts Theorem 3 if α is small enough.

To conclude this note, let us mention still another innocent question.
Theorem 3 implies that any smooth function f : c0 → R can be (uniquely)

extended to a function f̃ : l∞ → R which is w∗-continuous on bounded sets. It
would be interesting to know if such an extension inherits any smoothness property
from f .

References

[B] S. M. Bates, On smooth, nonlinear surjections of Banach spaces, Israel J. Math. 100 (1997),
209-220. MR 98i:58016
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