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How to Get Common Universal Vectors
F. BAYART & É. MATHERON

ABSTRACT. We prove the existence of common universal vectors
for various uncountable families of universal sequence of linear op-
erators. In particular, we give a criterion for a one-parameter fam-
ily of operators on a Banach space to have a common hypercyclic
vector. This criterion relies on some tools from Probability The-
ory and depends on the geometry of the underlying Banach space.
We also study several specific examples, such as shift operators or
translation-dilation operators.

1. INTRODUCTION

Let X be a separable Fréchet space. A sequence T = (Tn)n∈N of continuous linear
operators on X is said to be universal if there exists some x ∈ X such that the set
{Tn(x) | n ∈ N} is dense in X. Such a vector x is said to be universal for T,
and the set of universal vectors for T is denoted by Univ(T). A single operator
T is said to be hypercyclic if the sequence T := (Tn)n∈N is universal, and the set
of hypercyclic vectors for T is denoted by HC(T). See [13] for a nice survey on
universality and hypercyclicity.

If T = (Tn) is a universal sequence of operators and if, in addition, all oper-
ators Tn have dense range and commute with each other, then Univ(T) is dense
in X since, together with a vector x, it contains the whole set {Tn(x) | n ∈ N}.
Moreover, without any assumption on T, it is easy to check that Univ(T) is a Gδ
subset of X. In particular, if T ∈ L(X) is hypercyclic, then HC(T) is a dense
Gδ subset of X. By the Baire Category Theorem, it follows that if (Tλ)λ∈Λ is a
countable family of hypercyclic operators, then the Tλ’s have common hypercyclic
vectors, in fact a dense Gδ set of common hypercyclic vectors.

Of course, the situation is less simple in the case of an uncountable family of
operators. For example, it is rather easy to check that there is no vector x ∈ `2(N)
which is hypercyclic for all hypercyclic weighted backward shifts on `2(N). More
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precisely, for each sequence w = (wn) ∈ {1; 2}N∗ , let Tw be the weighted back-
ward shift associated to w. By a well known result of Salas ([21]), the weighted
shift Tw is hypercyclic if and only if supnw1 × · · · × wn = ∞, which in the
present case means that the sequence w has infinitely many 2’s. Now, given any
vector x ∈ `2(N), it is easy to construct inductively, using the fact that xn → 0,
a sequence w with infinitely many 2’s such that w1 × · · · ×wn|xn| ≤ 1 for all
n ∈ N∗. Then Tw is hypercyclic, but x 6∈ HC(Tw) because the first coordinate
of Tnw(x) never exceeds 1.

Nevertheless, several positive results concerning common hypercyclicity have
been proved recently. The first example is due to E. Abakumov and J. Gor-
don ([1]), who showed that if B is the usual backward shift on `2(N), then⋂
λ>1HC(λB) ≠ ∅. Many other natural examples can be found in [2], [5] or

[9]. In particular, a general criterion for common universality has been proved by
G. Costakis and M. Sambarino ([9]). This criterion is used to prove the existence
of common hypercyclic vectors for all operators λD, λ > 0, where D is the dif-
ferentiation operator on the space of entire functions H (C), and it is also applied
to the family (Tλ)λ>1, where Tλ is the weighted backward shift on `2(N) associ-
ated to the weight sequencew(λ) = (1+λ/n)n≥1. By very similar arguments, yet
without applying the general criterion, it is also proved in [9] that if Tλ is the oper-
ator of translation by the complex number λ on H (C), then

⋂
λ∈THC(Tλ) ≠∅.

Notice that in all of these examples, it is shown that there is in fact a residual
set of common hypercyclic vectors. This is not accidental. Indeed, it is not hard
to check that if (Tλ)λ∈Λ is a family of operator parameterized by some topological
space Λ, then

⋂
λ∈ΛHC(Tλ) is always a Gδ set provided Λ is σ -compact and

Tλ(x) depends continuously on the pair (λ,x). If, in addition, all operators Tλ
commute with some hypercyclic operator T , then

⋂
λ∈ΛHC(Tλ) is dense in X

whenever it is nonempty, since together with any vector x, it contains the T -orbit
of x. Thus, under rather mild hypotheses, the set

⋂
λ∈ΛHC(Tλ) is residual if

it is nonempty. Actually, we do not know any natural example where this set is
nonempty yet not residual.

In the present paper, we obtain some further positive results concerning com-
mon universal vectors for parameterized sequences of operators.

In Section 3, we consider one-parameter families of operators on a Banach
space X, and we prove a criterion for common hypercyclicity in that setting. This
criterion is formally very similar to the Costakis-Sambarino criterion, but some
of its hypotheses are weaker, so that it enables us to treat at least two examples
which cannot be attained by the Costakis-Sambarino criterion, namely translation
operators on some weighted Lp spaces and composition operators on the Hardy
space H2(D). The price to pay is that our criterion can be applied in the Banach
space setting only, since it depends on the type of the underlying Banach space X.
An interesting feature of the proof is that it mixes Baire Category arguments with a
nontrivial result from Probability Theory, namely Dudley’s majorization theorem
for subgaussian stochastic processes.
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Sections 4 and 5 deal with specific examples. In Section 4, we consider one-
parameter families of weighted backward shifts; we prove the existence of com-
mon hypercyclic vectors under some rather general assumptions. We also prove a
common hypercyclicity result for multiples of “generalized backward shifts” in the
sense of [12]. In Section 5, we consider operators of translation-dilation type on
the space of entire functions H (C); that is, operators of the form Tn,(s,t)u(z) =
an(s), u(z + bn(t)), where s, t are real parameters.

We conclude the paper by some remarks on the size or the shape of a set of
parameters allowing common universality. These are simple observations, but they
may indicate that interesting phenomena are to be discovered in that direction.

We tried to put our results into a general framework, wide enough to en-
compass our examples as well as the aforementioned examples from [9]. This is
explained in Section 2.

2. GENERAL FACTS

In this section, we consider parameterized sequences of operators on some sepa-
rable Fréchet space X. Thus, we have a parameter space Λ, and to each λ ∈ Λ
is associated a sequence Tλ = (Tn,λ)n∈N ⊂ L(X). We assume that the parameter
space Λ is a topological space, and that Tn,λ(x) depends continuously on the pair
(λ,x), for each n ∈ N. Finally, we also assume that there exists a dense setD ⊂ X
such that each operator Tn,λ has a right inverse Sn,λ : D → X. When each Tλ is
the sequence of iterates of a single operator Tλ, it is assumed that each Tλ has a
right inverse Sλ mapping D into D, and that Sn,λ = Snλ for all n ∈ N.

2.1. The basic criterion It follows from the Baire Category Theorem that a
single sequence of operators T = (Tn) ⊂ L(X) is universal if and only if for each
nonempty open set U ⊂ X, the open set set {x | ∃n : Tn(x) ∈ U} is dense in X.
In other words, T is universal iff for each pair (U,V) of nonempty open subsets of
X, one can find a point p ∈ X and an integer n such that p ∈ V and Tn(p) ∈ U .
The following criterion for common universality is a “parameterized” version of
this simple observation. It may look a bit artificial, but all our results ultimately
rely on it.

Basic Criterion. Assume that Λ is a countable union of compact sets K satisfying
the following property. For each pair (u,v) ∈ D×D and each O, open neighbour-
hood of 0 in X, one can find a point p ∈ X, parameters λ1, . . . , λq ∈ Λ, sets of
parameters Λ1, . . . , Λq ⊂ Λ with λi ∈ Λi for all i, and integers n1, . . . , nq ∈ N,
such that

(i)
⋃
iΛi ⊃ K;

(ii) p − v ∈ O;
(iii) for each i ∈ {1, . . . , q} and all λ ∈ Λi:

� Tni,λSni,λi(u)−u ∈ O,
� Tni,λ(p)− Tni,λSni,λi(u) ∈ O.

Then
⋂
λ∈Λ Univ(Tλ) is a dense Gδ subset of X.
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Proof. First, by the Baire Category Theorem, we may assume that Λ is a
compact set satisfying the property described above. Then, since Tn,λ(x) depends
continuously on (λ,x) ∈ Λ × X, it follows from the compactness of Λ that for
each nonempty open set U ⊂ X, the set

UΛ := {x ∈ X | ∀λ ∈ Λ ∃n : Tn,λ(x) ∈ U}

is open in X. By the Baire Category Theorem, it is enough to show that all sets
UΛ are dense in X. In other words, we must check that V ∩ UΛ ≠ ∅, for each
pair (U,V) of nonempty open subsets of X; let us fix such a pair (U,V). Since
D is dense in X, we may assume that U = u + N and V = v + N, where u,
v ∈ D and N is a neighbourhood of 0. Let O ⊂ X be a neighbourhood of 0 such
that O +O ⊂ N, and choose p, ni, λi, Λi satisfying the assumptions of the basic
criterion. Since O ⊂ N, we already know that p ∈ V ; so we just have to check
that p ∈ UΛ. Let us fix λ ∈ Λ, choose i ∈ {1, . . . , q} such that λ ∈ Λi, and put
n = ni. Writing

Tn,λ(p)−u = (Tn,λ(p)− Tn,λSnλi(u))+ (Tn,λSn,λi(u)−u),

we immediately get p ∈ UΛ. ❐

In the hypercyclicity setting, the following refinement of the basic criterion will be
used in a crucial way in Section 3. Notice that, unlike the general basic criterion,
this refined criterion does not seem to follow directly from the Baire Category
Theorem, since our proof uses a nontrivial result due to Costakis and Peris ([7],
[19]). Alternatively, one could use the Bourdon-Feldman Theorem ([6]).

Remark 2.1. Assume that for each λ ∈ Λ, the operators Tn,λ are the iterates
of a single operator Tλ. Then, in the basic criterion, one can replace the second
condition in item (iii) by the following one:

there exists εi ∈ {−1; 1} such that Tniλ (p)− εiT
ni
λ S

ni
λi (u) ∈ O.

Proof. Replacing UΛ by ŨΛ := {x ∈ X | ∀λ ∈ Λ ∃n : Tnλ (x) ∈ U or
Tnλ (x) ∈ −U}, the proof above shows that there exists a dense Gδ set of vectors
x ∈ X such that {Tnλ (x) | n ∈ N} ∪ {Tnλ (−x) | n ∈ N} is dense in X for
all λ ∈ Λ. By the Costakis-Peris Theorem, such a vector x is hypercyclic for all
operators Tλ. ❐

2.2. A one-dimensional criterion We now wish to state a “one-dimensional”
criterion, which will apply when the parameter set Λ is an interval of R. This cri-
terion, which follows quite easily from the basic criterion, will be used in Section
4. To state it conveniently, we need to introduce the following notation.
� For each n ∈ N, each u ∈ D and each O, neighbourhood of 0 in X, we put

δn(u,O) = sup{δ ∈ R+ | 0 ≤ µ − λ ≤ δ ⇒ Tn,λSn,µ(u)−u ∈ O}.
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If (ni) is a finite or infinite sequence of integers, the number∑
i
δni(u,O)

will be called the weighted length of (ni) relative to (u,O).
� For each n ∈ N, For each pair (u,v) ∈ D × D and each O, neighbour-

hood of 0 in X, we denote by T (u,v,O) the family of all finite increasing
sequences of integers s = (n1, . . . , nq) satisfying the following property:
given λ0 < λ1 < · · · < λq ∈ Λ, one can find p ∈ X such that p − v ∈ O
and ∀ i ∈ {1, . . . , q}, ∀λ ∈ [λi−1;λi], Tni,λ(p)− Tni,λSni,λi(u) ∈ O.

The notation is due to the fact that T (u,v,O) is a tree of finite sequences of
integers: if s is an extension of t and s ∈ T (u,v,O), then t ∈ T (u,v,O).

One-dimensional Criterion. If each tree T (u,v,O) has elements of arbitrarily
large weighted length, then

⋂
λ∈Λ Univ(Tλ) is a dense Gδ subset of X. In particular,

this happens if each tree T (u,v,O) has an infinite branch with infinite weighted
length.

Proof. By the Baire Category Theorem, we may assume that Λ is a compact
interval [a;b]. For each triple (u,v,O) one can find (n1, . . . , nq) ∈ T (u,v,O)
such that

∑q
1 δni(u,O) ≥ b − a. Let a = λ0 < · · · < λq = b be a subdivision of

K such that λi −λi−1 ≤ δni(u,O) for all i ∈ {1, . . . , q}. Putting Λi = [λi−1;λi],
we see at once that the basic criterion applies. ❐

In Section 4, we will use the one-dimensional criterion via the following remark.

Remark 2.2. The one-dimensional criterion criterion can be applied if, for
each continuous semi-norm ‖ . ‖ on X, the two following properties are satisfied.

(i) For each u ∈ D and λ ≤ µ ∈ K one can write

‖Tn,λSn,µ(u)−u‖ ≤ωu(Cn(u)(µ − λ)),

where limt→0ωu(t) = 0.
(ii) For each pair (u,v) ∈ D × D, one can find an infinite set A ⊂ N and a

positive integer N such that
� ∑

n∈A 1/Cn(u) = ∞;
� Putting O = {‖x‖ < 1}, the tree T (u,v,O) contains all sequences
(n1, . . . , nq) ⊂ A with n1 ≥ N and ni −ni−1 ≥ N for all i > 1.

Proof. Let us fix a triple (u,v,O) as in the one-dimensional criterion, where
we may assumeO has the form {‖x‖ < 1}, for some continuous semi-norm on X.
Condition (i) implies that one can write δn(u,O) ≥ η/Cn(u), for some positive
constant η = η(u,O). Let A = {a0, a1, . . . } be given by (ii), where the enumer-
ation is increasing. Then, for each r ∈ {0, . . . , N − 1}, the sequence (n(r)i ) =
(ar+Ni)i≥1 is an infinite branch of T (u,v,O), and one of these branches must
have infinite weighted length. ❐
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2.3. The Costakis-Sambarino criterion To make any use of the one-di-
mensional criterion, it is clear that one must know how to check that a sequence
(n1, . . . , nq) belongs to some given tree T (u,v,O). One way to do this is by
using the following lemma.

Lemma 2.3. Let (n1, . . . , nq) be a finite increasing sequence of integers, and let
O′ be a neighbourhood of 0 in X such that O′ +O′ + O′ ⊂ O. Assume that for all
λ1 < · · · < λq ∈ Λ, the following properties hold true:
(a)

∑q
i=1 Sni,λi(u) ∈ O;

(b1) Tni,λ(v) ∈ O′ for all i ∈ {1, . . . , q} and λ ∈ Λ;
(b2)

∑
j<i Tni,λSnj,λj (u) ∈ O′ whenever i ∈ {1, . . . , q} and λ ≥ λj for all j < i;

(b3)
∑
j>i Tni,λSnj,λj (u) ∈ O′ whenever i ∈ {1, . . . , q} and λ ≤ λj for all j > i.

Then, (n1, . . . , nq) ∈ T (u,v,O).
Proof. This follows easily from the hypotheses and the definition ofT (u,v,O):

given λ1 < · · · < λq ∈ Λ, just put

p = v +
q∑
i=1

Sni,λi(u). ❐

From this and Remark 2.2, one can deduce the general criterion for common
universality proved in [9]. Here, the parameter space Λ is an interval of R.

Costakis-Sambarino’s Criterion. Assume that for each continuous semi-norm
‖ . ‖ on X, each point f ∈ D and each compact set K ⊂ Λ, the following properties
hold true.

(i) There exists a sequence of positive numbers (ck)k∈N such that
� ∑∞

0 ck <∞;
� ‖Tn+k,λSn,α(f )‖ ≤ ck for any n, k ∈ N and α ≤ λ ∈ K;
� ‖Tn,λSn+k,α(f )‖ ≤ ck for any n, k ∈ N and λ ≤ α ∈ K.

(ii) Given ε > 0, there exists η > 0 such that

0 ≤ µ − λ < η
n
⇒ ‖Tn,λSn,µ(f )− f‖ < ε.

Then
⋂
λ∈Λ Univ(Tλ) is a dense Gδ subset of X.

Proof. This follows from the above lemma and the one-dimensional criterion
as stated in Remark 2.2. Indeed, condition (2) implies (i) in Remark 2.2, with
Cn(u) = O(n), and thanks to Lemma 2.3, condition (1) implies (ii) in Remark
2.2, with A = N. ❐

The Costakis-Sambarino is quite general, and it does apply to many natural ex-
amples. However, it turns out that in some cases, this criterion cannot be applied
because the strong summability assumption on the sequence (ck) is not satisfied.
In Section 3, we will show how to relax this assumption in a Banach space setting.
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2.4. Additional remarks To conclude this section, let us mention briefly
some possible extensions of the one-dimensional criterion.

(1) The definitions of the quantities δn(u,O) and the trees T (u,v,O) make
sense if Λ is a subset of some partially ordered metric space (E,d,≤). For example,
E could be Rk with the product ordering. In this setting, the one-dimensional
criterion remains valid as stated, if one assumes that Λ is a monotonic Lipschitz
curve, that is, the range of some monotonic Lipschitz map ϕ : I → E, where I is
an interval of R. The proof is exactly the same. Remark 2.2 also holds as stated in
this more general setting, and so does Lemma 2.3. An application will be given in
Section 6.

(2) Still in the partially ordered metric space setting, one can formulate a “d-
dimensional” criterion where the parameter space is a d-dimensional monotonic
Lipschitz surface, that is, the monotonic Lipschitz image of a d-dimensional cube.
Here, we put the product ordering on Rd. The only change is the definition of
the weighted length, where δni(u,O) has to be replaced by δni(u,O)d. Remark
2.2 also holds as stated, provided we replace the condition

∑
n∈A 1/Cn(u) = ∞

by
∑
n∈A 1/Cn(u)d = ∞. However, we have no interesting application of that.

3. OPERATORS ON BANACH SPACES WITH NONTRIVIAL TYPE

In this section, X is a Banach space. As announced at the end of Section 2.3,
our aim is to relax the very strong summability assumption made on the sequence
(ck) in the Costakis-Sambarino criterion. This will be done with the help of some
classical tools from Probability Theory.

3.1. On Dudley’s Theorem In this section, we are going to prove a variant
of Dudley’s Theorem, a very useful result from Probability Theory which gives an
estimate for the expectation of the supremum of a subgaussian random process.
For convenience of the reader, we briefly review some well-known facts. Our main
references are [18] and [17].

If (Ω,A,P) is a probability space, and ifψ : R+ → R+ is an increasing convex
function with ψ(0) = 0 and ψ(∞) = ∞, the Orlicz space LψX = Lψ(Ω,P, X) is
the Banach space of all random variables Z : Ω → X such that E(ψ(‖Z‖/a)) <
+∞ for some finite constant a > 0. The norm of the space LψX is the so-called
Luxemburg norm, which is defined by

‖Z‖ψ = inf
{
a > 0 | E

(
ψ
(‖Z‖
a

))
≤ 1

}
.

We will be concerned with the case ψ(x) = ψ2(x) := ex2 − 1. Elemen-
tary computations using Stirling’s formula show that there exist two numerical
constants a and b such that

(3.1) a‖Z‖ψ2 ≤ sup
p≥1

‖Z‖p√p ≤ b‖Z‖ψ2
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for all Z ∈ Lψ2
X .

If (T ,d) is a compact semi-metric space, we denote by Nd(ε), ε > 0, the ε-
covering number of (T ,d), that is, the minimal number of d-open balls of radius
ε which are needed to cover T . The function Nd is the entropy function of the
semi-metric space (T ,d). The entropy integral J(d) is defined by

J(d) =
∫ +∞

0

√
log(Nd(ε))dε.

We will use the following form of Dudley’s Theorem, which is due to Pisier
([20]).

Theorem 3.1 (Dudley’s Theorem). Let (T ,d) be a compact semi-metric space
with finite entropy integral J(d), and let (Zt)t∈T be an X-valued random process such
that Zt ∈ Lψ2

X for all t ∈ T . Assume that the process satisfies the Lipschitz condition

‖Zs − Zt‖ψ2 ≤ d(s, t), s, t ∈ T.

Then one has the following estimate (t0 being an arbitrary point in T ):

E(sup
t
‖Zt‖) ≤ b1(J(d)+ ‖Zt0‖ψ2),

for some numerical constant b1 < ∞.

For our application in hypercyclicity, we will need a variant of Dudley’s The-
orem, where one deals with finitely many subgaussian processes.

Corollary 3.2. Let q be a positive integer, and for each i ∈ {1, . . . , q}, let
(Zi,λ)λ∈Λi be a random process with values in X, where Λi is a compact interval of R.
Assume that Zi,λ ∈ Lψ2

X for each i and all λ ∈ Λi, and that for each i ∈ {1, . . . , q},
the process (Zi,λ) satisfies the Lipschitz condition

‖Zi,λ − Zi,µ‖ψ2 ≤ ci|λ− µ|, λ, µ ∈ Λi.
Then one has the following estimate:

E(sup
i,λ
‖Zi,λ‖) ≤ b2(sup

i
ci|Λi| + sup

i,λ
‖Zi,λ‖ψ2)

√
log(q + 1),

where |Λi| is the length of the interval Λi and b2 is a numerical constant.

Proof. We define a compact metric space (T ,d) and a random process on it
to deduce Corollary 3.2 from Dudley’s Theorem. Put MΛ := supi ci|Λi|, MZ :=
2 supi,λ ‖Zi,λ‖ψ2 , T := {(i, λ) | i ∈ {1, . . . , q}, λ ∈ Λi}, and let us define a metric
d on T by setting

d((i, λ), (j, µ)) :=
{
ci|λ− µ| if i = j,
MZ otherwise.



How to Get Common Universal Vectors 9

The entropy function Nd(ε) is dominated by 2MΛq/ε, and the diameter of
(T ,d) is not greater than Mλ +MZ . Hence, we may estimate the entropy integral
as follows:

J(d) ≤
∫MΛ+MZ

0

√
log(2MΛq/ε)dε

≤
(√

log 2+
√

logq +
∫ 1

0

√
log(1/t)dt

)
(MΛ +MZ).

Corollary 3.2 now follows directly from Dudley’s Theorem. ❐

We intend to apply Corollary 3.2 to Rademacher processes. This will be possi-
ble via Kahane’s inequality. Indeed, for a random variable of the form Z(ω) =∑
k εk(ω)xk, where (εk) is a sequence of independent Rademacher variables (εk =

±1 with probability 1
2), Kahane’s inequality, in a version due to Kwapien ([16]),

reads ‖Z‖p ≤ C√p‖Z‖2. Using (3.1), this shows that one may estimate the
Orlicz-norm ‖Z‖ψ2 of a Rademacher process by computing its L2 norm.

3.2. A new criterion We shall now derive from Corollary 3.2 a criterion
for common hypercyclicity where the geometry of the underlying Banach space
plays a crucial role. In what follows, we consider a family (Tλ)λ∈Λ of bounded
operators on X, where the parameter space Λ is an interval of R. We assume that
Tλ(x) depends continuously on the pair (λ,x), and that there exists a dense set
D ⊂ E such that each operator Tλ has a right inverse Sλ : D→D.

Recall that the Banach space X is said to have type p (p ∈ [1; 2]) if there exists
some finite constant C such that

∥∥∥∑
i∈I
εixi

∥∥∥
2
≤ C

(∑
i∈I
‖xi‖p

)1/p

for each finite family (xi)i∈I ⊂ X and each finite family of independent Rade-
macher variables (εi)i∈I . It is well known that every Banach space has type 1, and
that Lp spaces have type min(2, p).

Theorem 3.3. Assume the Banach space X has type p ∈ [1; 2], and that for
each f ∈ D and any compact set K ⊂ Λ, there exists a sequence of positive numbers
(ck)k∈N such that the following conditions are satisfied:

(a) (ck) is nonincreasing, and
∑∞
k=0 c

p
k <∞;

(b1) ‖Tn+kλ Snα(f )‖ ≤ ck, for any n, k ∈ N and λ, α ∈ K, λ ≥ α;
(b2) ‖Tnλ Sn+kα (f )‖ ≤ ck for any n, k ∈ N and λ, α ∈ K, λ ≤ α;
(c1) ‖(Tn+kλ −Tn+kµ )(Snαf)‖ ≤ (n+k)|λ−µ|ck, for n, k ∈ N and λ, µ ≥ α ∈ K;
(c2) ‖(Tnλ − Tnµ )(Sn+kα (f ))‖ ≤ n|λ− µ|ck, for n, k ∈ N and λ, µ ≤ α ∈ K.

Then
⋂
λ∈ΛHC(Tλ) is a dense Gδ subset of E.
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Remark 3.4. Since every Banach space has type 1, this criterion can be ap-
plied with p = 1 in an arbitrary Banach space X. However, in that case the
hypotheses are stronger than in the Costakis-Sambarino criterion, so this does not
help at all.

Remark 3.5. In the two examples below, we will use Theorem 3.3 with a
sequence (ck) of the form

ck =
M

1+ ks ,

for some finite constant M and some real number s > 1/p.

Proof of Theorem 3.3. We apply the basic criterion, in the form mentioned
in Remark 2.1. So let us fix a compact interval K = [a;b] ⊂ Λ, a pair (u,v) ∈
D × D and an open ball O = B(0, η). Let (ck)k∈N be a sequence of positive
numbers satisfying (a), such that (c1), (c2) hold for f = u, and (b1), (b2) hold for
both u and v.

We choose some large positive integer N and some small positive constant
τ. Since the series

∑
1/(Ni) is divergent, one can find a subdivision a = λ0 <

· · · < λq = b of K such that λi − λi−1 < τ/(Ni) for all i ∈ {1, . . . , q}. We
put Λi = [λi−1;λi], i ∈ {1, . . . , q}, so that condition (i) in the basic criterion is
satisfied.

Now, we consider the random point

p(ω) = v +
q∑
i=1

εi(ω)SNiλi (u) = v +y(ω),

where (εi) is a sequence of independent Rademacher variables. We show that
with large probability, p(ω) satisfies conditions (ii) and (iii) in the basic criterion.
In what follows, the symbol C will always stand for a constant whose value may
change from line to line and depends only on X and u, v, K.

By condition (b2) with n = 0 and k = Ni, we have ‖SNiλi (u)‖ ≤ cNi for all
i ∈ {1, . . . , q}. Since X has type p and s > 1/p, it follows that

E(‖y(ω)‖) ≤ C
( q∑
i=1

cpNi
)p
≤ C

( ∑
k≥N

cpk
)1/p

,

so that if N is large enough, then ‖y(ω)‖ < η with large probability. In other
words, condition (ii) in the basic criterion is satisfied with large probability if N is
large enough.

Next, it follows from (c2) (with k = 0, n = Ni and α = µ = λi) that for each
i ∈ {1, . . . , q} and all λ ∈ Λi, we have

‖TNiλ SNiλi (u)−u‖ ≤ CNi|λ− λi| ≤ Cτ,
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so that, whatever the choice ofN may be, the (non-random) first part of condition
(iii) is satisfied if τ is small enough.

Now, we use Corollary 3.2 to check the second part of condition (iii) in the
basic criterion, in the form stated in Remark 2.1. For each i ∈ {1, . . . , q} and
λ ∈ Λi, we have

TNiλ (p(ω))− εi(ω)TNiλ SNiλi (u) = T
Ni
λ (v)+ TNiλ (yi,λ(ω)),

where yi,λ(ω) =
∑
j≠i εj(ω)S

Nj
λj (u). By condition (b1) with n = 0 and k = Ni,

the non-random term TNiλ (v) is small if N is large. To estimate the second term,
we put

Zi,λ(ω) = TNiλ (yi,λ(ω)),
and we check that the hypotheses of Corollary 3.2 are satisfied.

Since X has type p, we have

‖Zi,λ − Zi,µ‖ψ2 ≤ C‖Zi,λ − Zi,µ‖2

≤ C
(∑
j≠i
‖(TNiλ − TNiµ )(SNjλj (u))‖p

)1/p
.

Using (c1), (c2), it follows that

‖Zi,λ − Zi,µ‖ψ2

≤ C
(∑
j<i
(Ni)p|λ− µ|pcpN(i−j)

)1/p
+ C

(∑
j>i
(Ni)p|λ− µ|pcpN(j−i)

)1/p

≤ ci|λ− µ|,

where ci = CNi(
∑
`≥1 c

p
N`)

1/p. Similarly, conditions (b1), (b2) give

‖Zi,λ‖ψ2 ≤ C
(∑
j≠i
‖TNiλ S

Nj
λj (u)‖

p
)1/p

≤ C
( ∑
`≥1

cpN`
)1/p

.

Observe now that ci|λi − λi−1| ≤ Cτ(
∑
`≥1 c

p
N`)

1/p and logq ≤ CN/τ. Using
Corollary 3.2, it follows that

E(sup
i,λ
‖Zi,λ‖) ≤

C
τ1/2

√
N
( ∑
`≥1

cpN`
)1/p

.

Assume that N is an even integer, N = 2N′. Since the sequence (ck) is nonin-
creasing, we have

cpN` ≤
1
N′

2N′`−1∑
k=(2`−1)N′

cpk for each ` ≥ 1.
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Thus, keeping in mind that p ≤ 2, we get

E(sup
i,λ
‖Zi,λ‖) ≤ C

τ1/2N
1/2−1/p

( ∑
k≥N′

cpk
)1/p

≤ C
τ1/2

( ∑
k≥N′

cpk
)1/p

.

We conclude that if N = N(τ) is large enough, then, with large probability,
TNiλ (yi,λ(ω)) is close to 0 for each i ∈ {1, . . . , q} and all λ ∈ Λi, and hence

‖TNiλ (p(ω))− εi(ω)TNiλ SNiλi (u)‖ < η

for each i and all λ ∈ Λi.
Putting everything together, we have shown that if τ is small enough and

N = N(τ) is large enough, then many points p(ω) satisfy conditions (ii), (iii) in
the basic criterion. This concludes the proof. ❐

Remark 3.6. The use of the Baire Category Theorem to produce hypercyclic
vectors has become standard since the 1986 paper of Gethner and Shapiro ([11]).
The introduction of probabilistic arguments (via ergodic theory) is much more
recent (see [4]). It seems likely that other hypercyclicity results may be obtained
by mixing these two types of arguments, as in the proof of Theorem 3.3.

3.3. Two examples We now illustrate Theorem 3.3 with two common hy-
percyclicity results which cannot be deduced from the Costakis-Sambarino crite-
rion.

Example 3.7. We consider translation operators on some weighted Lp spaces.
Let w : R → R be a positive, bounded continuous function such that w(t −
λ)/w(t) is bounded for each fixed λ ∈ R. For each p ∈ [1;∞[, we put Xp =
Lp(R,w(t)dt), so that Xp has type p̃ = min(2, p). For each real number λ,
let Tλ be the translation-operator on Xp defined by Tλf(t) = f(t + λ). Then
Tλ is invertible with inverse Sλ = T−λ. Using Kitai’s criterion (see [13]), it is
not hard to check that all operators Tλ, λ ≠ 0 are hypercyclic on Xp provided

lim|x|→∞

∫ x+A
x−A

w(t)dt = 0 for each fixed A > 0; for example, this happens if

w ∈ L1(R), or if w ∈ C0(R). We now show that if w satisfies an estimate of the
form

w(t) ≤ C
1+ |t|r

for some r > p/p̃, then
⋂
λ∈R∗ HC(Tλ) is a dense Gδ subset of Xp. In other

words, if w(t) ≤ C/(1+ |t|r ) for some r > 1, then
⋂
λ∈R∗ HC(Tλ) ≠ ∅ on Xp

for all p < 2r .

Proof. By symmetry, we may consider only positive λ’s. Let D ⊂ Xp be the
set of all compactly supported smooth functions. We show that the hypotheses
of Theorem 3.3 are satisfied with ck = M/(1 + ks), where s = r/p > 1/p̃. So
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let us fix a compact interval K = [a;b] ⊂ ]0;∞[ and a smooth function f ∈ D
supported on some interval [−A;A].

If λ ≥ α ∈ K and n, k ∈ N, then

‖Tn+kλ Snα(f )‖p =
∫
R
|f(t + (n+ k)λ−nα)|pw(t)dt

≤ C
∫ A−(n+k)λ+nα
−A−(n+k)λ+nα

w(t)dt

≤ C
1+ (ka−A)r ,

provided k is large enough. This gives (b1), and the same proof works for (b2).
To prove (c1), let us fix α ≤ λ, µ ∈ K. If (n+k)|λ−µ| ≥ 1, then (c1) follows

from (b1) and the triangle inequality, so we may assume that (n+ k)(λ− µ) ≤ 1
and λ ≥ µ. By the Mean Value Theorem, we have

|f(t + (n+ k)λ−nα)− f(t + (n+ k)µ −nα)| ≤ C(n+ k)(λ− µ)

for all t ∈ R, so that

‖(Tn+kλ − Tn+kµ )(Snα(f ))‖p ≤ C(n+ k)p(λ− µ)p
∫ A−(n+k)µ+nα
−A−(n+k)λ+nα

w(t)dt

≤ C(n+ k)
p(λ− µ)p(2A+ (n+ k)(λ− µ))

1+ (ka−A)r

≤ C(n+ k)
p(λ− µ)p

1+ (ka−A)r ,

provided k is large enough. This gives (c1), and the proof is the same for (c2). ❐

Example 3.8. We consider composition operators on the Hardy spaceHp(D),
1 ≤ p < ∞. If ϕ is an automorphism of D, the composition operator associated
to ϕ is the operator on Hp(D) defined by Cϕf = f ◦ϕ. Then Cϕ is hypercyclic
on Hp if and only if the automorphismϕ is either hyperbolic (one attractive fixed
point on T, and a second fixed point on T) or parabolic (a single, attractive, fixed
point on T).

Proof. Let Λ be the set of all automorphisms of D having 1 as an attractive
fixed point. It is proved in [5] that

⋂
ϕ∈ΛHC(Cϕ) is a residual subset of H2(D).

In the hyperbolic case, one can apply the Costakis-Sambarino criterion, but this
turns out to be impossible in the parabolic case; see [5] for details. We now show
that for p ∈ [1; 4[, one can apply Theorem 3.3 in the parabolic case.

Let C+ be the right half-plane {w ∈ C | Rew > 0}, and let σ : D → C+ be
the Cayley map, σ(z) = (1 + z)/(1 − z). Then Hp(D) can be identified via σ
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with a space of entire functions on C+, namely H p := {f ◦ σ−1 | f ∈ Hp}; the
norm of a function g ∈H p is given by

‖g‖p =
∫
R
|g(it)|p dt

1+ t2 .

Moreover, if ϕ is a parabolic automorphism of D with +1 as attractive fixed
point, then ϕ := σ ◦ ϕ ◦ σ−1 is a translation: ϕ(w) = w + iλ, where λ is a
nonzero real number. Thus, Cϕ acts as a translation operator Tλ on H p, and it
is enough to show that

⋂
λ>0HC(Tλ) is a residual subset of H p. As usual, we

denote by Sλ the inverse of Tλ, namely Sλ = T−λ.
Let P be the set of all holomorphic polynomials P satisfying P(1) = P ′(1) =

0, and let D := {P ◦σ−1 | P ∈ P}. It is easy to check that D is dense in H 2. We
show that the hypotheses of Theorem 3.3 are satisfied with a sequence (ck) of the
form ck = M/(1+ k2/p). This will be enough since H p has type p̃ = min(2, p)
and 2/p > 1/p̃ if p < 4.

Let us fix Q = P ◦σ−1 ∈ D and some compact interval K = [a;b] ⊂ ]0;∞[.
For notational simplicity, we shall write Q(t) instead of Q(it), t ∈ R. Notice
that, by the definition of P, we have |P(z)| ≤ C|z − 1|2 and |P ′(z)| ≤ C|z − 1|
on T, which implies |Q(t)| ≤ C/(1+ t2) and |Q′(t)| ≤ C/(1+ t2)3/2 on R. For
the second inequality, just compute the derivative of σ−1.

If λ ≤ µ ≤ α ∈ K and n, k ∈ N, then

‖Tnλ Sn+kα (Q)− Tnµ Sn+kα (Q)‖p

≤
∫
R

(∫ t+nµ−(n+k)α
t+nλ−(n+k)α

|Q′(s)|ds
)p dt

1+ t2

≤ C
∫
R

(∫ t+nµ−(n+k)α
t+nλ−(n+k)α

ds
(1+ s2)3/2

)p dt
1+ t2 .

Now, if t ≤ kα/2, then

(∫ t+nµ−(n+k)α
t+nλ−(n+k)α

ds
(1+ s2)3/2

)p
≤ C np|λ− µ|p

(1+ k2α2/4)3p/2
,

and if t ≥ kα/2, we can still write

(∫ t+nµ−(n+k)α
t+nλ−(n+k)α

ds
(1+ s2)3/2

)p
≤ np/q|λ− µ|p/q

∫ t+nµ−(n+k)α
t+nλ−(n+k)α

ds
(1+ s2)3p/2

,
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by Hölder’s inequality (1/p + 1/q = 1). Using Fubini’s Theorem, it follows that

‖Tnλ Sn+kα (Q)− Tnµ Sn+kα (Q)‖p

≤ C np|λ− µ|p
(1+ k2α2/4)3p/2

+ np/q|λ− µ|p/q ×
∫
R

(∫max(kα/2,s+(n+k)α−nλ)

max(kα/2,s+(n+k)α−nµ)
dt

1+ t2

)
ds

(1+ s2)3p/2

≤ C np|λ− µ|p
(1+ k2α2/4)3p/2

+np/q|λ− µ|p/q × Cn|λ− µ|
1+ k2α2/4

≤ C n
p|λ− µ|p

1+ k2a2/4
.

This proves (c2). The same proof works for (c1), and the proofs of (b1), (b2) are
simpler. ❐

4. SHIFT-LIKE OPERATORS

In this section, we consider one-parameter families of “shift-like” operators on the
Fréchet space X. We first prove a simple result on multiples of a single shift-like
operator. Then, we prove a rather general criterion for common hypercyclicity of
a one-parameter family of weighted backward shifts.

Both results are proved by using the one-dimensional criterion, as stated in
Remark 2.2. We shall need the following lemma, which is a special case of Lemma
2.3. The notation are the same.

Lemma 4.1. Let (n1, . . . , nq) be a finite increasing sequence of integers. Assume
that the following properties hold true.
(a) Tni,λ(v) = 0 for all i and Tni,λSnj,µ(u) = 0 if i > j, for all λ, µ ∈ Λ;
(b)

∑q
i=1 Sni,λi(u) ∈ O, for all λ1 < · · · < λq ∈ Λ, and

∑
j>i Tni,λSnj,λj (u) ∈ O

whenever i ∈ {1, . . . , q} and λ ≤ λj for all j > i.
Then, (n1, . . . , nq) ∈ T (u,v,O).

In the Banach space case, the following result was proved in [2] using some
ideas from [1].

Proposition 4.2. Let X be a separable Fréchet space, and let T ∈ L(X). Assume
that
(1) D := ⋃nKer(Tn) is dense in X and T has a right inverse S : D→ X;
(2) there exists some number λ0 ≥ 0 such that, for λ > λ0 and each u ∈ D, the set

{λ−nSn(u) | n ∈ N} is bounded in X.
Then

⋂
λ>λ0 HC(λT) is a dense Gδ subset of X.
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Proof. The whole parameter space is ]λ0;∞[, but we need only consider a
compact interval Λ ⊂ ]λ0;∞[, by Baire’s category theorem. Then one can write
infΛ = Cα, where α > λ0 and C > 1. By definition of D, the right inverse S
maps D into itself. We apply the one-dimensional criterion as stated in Remark
2.2, with Tn,λ = (λT)n and Sn,λ = (λ−1S)n. So let us fix a continuous semi-norm
‖ . ‖ on X.

For all u ∈ D and λ, µ ∈ Λ, one can write

‖Tn,λSn,µ(u)−u‖ = |λnµ−n − 1| ‖u‖ = |en(log(λ)−log(µ)) − 1| ‖u‖.

Thus, condition (i) in Remark 2.2 is satisfied with Cn(u) = O(n).
To see that (ii) is also true with A = N, let us fix (u,v) ∈ D ×D, let N be

a positive integer, and let (n1, . . . , nq) be a finite sequence of integers satisfying
n1 ≥ N and ni −ni−1 ≥ N for all i > 1. Putting O = {‖x‖ < 1}, we show that
the hypotheses of Lemma 4.1 are fulfilled if N is large enough.

Since Tn,λSn′ ,µ(u) = λnµ−n′Tn−n′(u) if n ≥ n′ and since u, v ∈ D,
property (a) in Lemma 4.1 is satisfied if N is large enough. Moreover, we have

‖Sn,λ(u)‖ ≤ λ−n‖Sn(u)‖ ≤ C−n‖α−nSn(u)‖

for all λ, n, and

‖Tn,λSn′,µ(u)‖ ≤ λ−(n′−n)‖Sn′−n(u)‖ ≤ C−(n′−n)‖α−(n′−n)Sn′−n(u)‖

if λ ≤ µ and n′ > n. Thus, thanks to property (2), we see that (b) in Lemma 4.1
will also hold provided N is large enough. This concludes the proof. ❐

Remark 4.3. It follows from the above proof that condition (2) above can
be weakened: it is enough to assume that there exists some set A ⊂ N such that∑
n∈A 1/n = ∞ and the set {λ−mSm(u) |m ∈ B} is bounded in X for all λ > λ0,

where B is the “difference set” {n′ −n | n, n′ ∈ A, n′ > n}.
Remark 4.4. If Ker(T) has dimension 1, then the operator T is a “generalized

backward shift” in the sense of [12]. In that case, condition (1) is automatically
fulfilled; see [12] for details.

Corollary 4.5. Let X be a Banach space, and let T ∈ L(X). Assume that⋃
nKer(Tn) is dense in X, and that T is moreover onto. Then there exists some finite
C ≥ 0 such that

⋂
λ>C HC(λT) is a dense Gδ subset of X.

Proof. By the open mapping theorem, T has a right inverse S : X → X such
that ‖S(u)‖ ≤ C‖u‖ for all u ∈ X, for some finite constant C. So one can apply
Proposition 4.2. ❐

Example 4.6. If B is the usual backward shift on X = c0(N) or `p(N), 1 ≤
p < ∞, then

⋂
λ>1HC(λB) is a dense Gδ subset of X. If D is the differentiation

operator on H (C), then
⋂
λ>0HC(λD) is a dense Gδ subset of H (C).
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Proof. In the first case,D is the space of finitely supported vectors and S is the
restriction of the forward shift; in the second case, D is the space of polynomials

and S is the “primitivation” operator defined by Su(z) =
∫ z

0
u(s)ds. We just

have to check that property (2) is satisfied in both cases. In the first case, this is
trivial because the forward shift has norm 1, and in the second case, this is also
clear because Sn(u) tends to 0 very rapidly, for each polynomial u. ❐

We shall now prove a result similar to Proposition 4.2 for a large class of weighted
backward shifts. In what follows, X is a Fréchet space with an unconditional basis
(en)n∈N, and we put D = span{en | n ∈ N}. By a weight sequence, we mean
any sequence of positive numbers w = (wn)n≥1. The linear map Tw : D → D
defined by T(e0) = 0 and T(en) = wnen−1, n ≥ 1, is called the weighted shift
associated tow. We say that a weight sequencew is admissible for X if Tw extends
to a continuous linear operator on X. By unconditionality of the basis (en), all
sequences w′ with w′

n = O(wn) are then also admissible for X. Each weighted
shift Tw has a linear right inverse Sw : D → D defined by the relations Sw(en) =
(1/wn+1)en+1, n ∈ N.

The hypotheses of the following theorem may look a bit technical, but we
think the generality could be useful in some situations. The reader should look
first at Corollaries 4.10 and 4.11 for more intuitive statements.

Theorem 4.7. Let (w(λ))λ∈Λ be a family of admissible weight sequences param-
eterized by some interval Λ ⊂ R. For each λ ∈ Λ, let Tλ be the weighted shift on X
associated to w(λ). Assume that the following properties hold true.

(1) All functions wn(λ) are nondecreasing, and Lipschitz on compact sets.
(2) For each compact interval K ⊂ Λ and each p ∈ N there exist two sets of integers

A, B ⊂ N such that:
(2i) the set B contains all differences n′ −n, where n, n′ ∈ A and n′ > n;

(2ii) for each j ∈ {0, . . . , p}, all series

∑
m∈B

1
w1(λ)× · · · ×wm+j(λ)

em+j

are convergent;
(2iii)

∑
n∈A 1/

∑n+p
k=1 Lk = ∞, where Lk is the Lipschitz constant of the function

log(wk) on K.

Then
⋂
λ∈ΛHC(Tλ) is a dense Gδ subset of X.

Condition (2ii) above can be formally weakened under additional assump-
tions; this is the content of the next remark, where the canonical backward shift
is the backward shift associated to the constant weight sequence w = 1, and the
canonical forward shift is its right inverse S1.
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Remark 4.8. If all weight sequences w(λ) are bounded and the canonical
backward shift is continuous, then condition (2ii) above is equivalent to

(2ii)′ all series
∑
m∈B

1
w1(λ)× · · · ×wm+p(λ)

em+p are convergent.

If all weight sequences w(λ) are bounded below and the canonical forward shift
is continuous, then (2ii) is equivalent to

(2ii)′′ all series
∑
m∈B

1
w1(λ)× · · · ×wm(λ)

em are convergent.

Proof. Assume that the canonical forward shift is continuous and all se-
quences w(λ) are bounded below. If p ∈ N is fixed, then, for each j ∈ {0, . . . , p}
and for allm ∈ B, one can write

1
w1(λ)× · · · ×wm+j(λ)

≤ C(λ)j

w1(λ)××wm(λ)

for some finite constant C(λ). By unconditionality of the basis (en) and conti-
nuity of the forward shift, it follows that (2ii)′′ is indeed equivalent to (2ii). The
proof for (2ii)′ is the same. ❐

Remark 4.9. Condition (1) can be weakened: instead of assuming that each
function wn(λ) is nondecreasing, it is enough to assume that the interval Λ can
be partitioned into countably many subintervals on which either all functions wn
are nondecreasing, or all functions wn are nonincreasing. This follows again from
Baire’s category theorem.

In the proof of Theorem 4.7, we use the following notation: for n ∈ N∗ and
j ∈ N, we put

θn,j(λ) = wj+1(λ)× · · · ×wj+n(λ),

and

θn(λ) = θn,0(λ) = w1(λ)× · · · ×wn(λ).

Proof of Theorem 4.7. As usual, we may assume that Λ is a compact interval
[a;b].

Since all functions wn(λ) are nondecreasing, it follows from the uncondi-
tionality of the basis (en) that the convergence of the series

∑
n≥1wn(λ)en−1 is

uniform with respect to λ ∈ Λ. Since all functions wn(λ) are moreover continu-
ous, this implies that Tλ(x) depends continuously on the pair (λ,x) ∈ Λ×X.
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We wish to apply the one-dimensional criterion as stated in Remark 2.2, with
Tn,λ = Tnλ and Sn,λ = Snλ . So let us fix a continuous semi-norm ‖ . ‖ on X, and
put O := {‖x‖ < 1}. Let us also fix (u,v) ∈ D×D, and choose a positive integer
p such that u, v are supported on {0, . . . , p}.

First, we check property (i) in Remark 2.2. For all j ∈ {0, . . . , p} and λ,
µ ∈ Λ, we have

Tnλ S
n
µ (ej)− ej =

(
θn,j(λ)
θn,j(µ)

− 1

)
ej.

Writing

θn,j(λ)
θn,j(µ)

= exp
[ j+n∑
k=j+1

(logwk(λ)− logwk(µ))
]
,

we get

∣∣∣∣∣1− θn,j(λ)
θn,j(µ)

∣∣∣∣∣ ≤ 1− exp
(
− |λ− µ|

j+n∑
k=j+1

Lk
)
.

Thus, property (i) holds with Cn(u) =
∑p+n
k=1 Lk and some easily specified func-

tionωu.
Now, we check property (ii) in Remark 2.2. Let A, B be the two sets of

integers given by (2). Replacing A by A −minA, which will not alter (2iii), we
may assume that, in addition to (2ii), all series

∑
n∈A

1
w1(λ)× · · · ×wn+j(λ)

en+j , j ∈ {0, . . . , p}

are convergent.
Let N be a positive integer to be chosen later, and let (n1, . . . , nq) be a finite

sequence from A such that n1 ≥ N and ni −ni−1 ≥ N for all i > 1. It is enough
to show that if N is large enough, then (n1, . . . , nq) fulfills the hypotheses (a), (b)
of Lemma 4.1.

Since Sn,λ(u) is supported on {0, . . . , n + p} for each n ∈ N and all λ, we
have Tn′,λSn,µ = 0 for all λ, µ ∈ Λ if n′ −n > p. Thus, condition (a) in Lemma
4.1 is satisfied if N is large enough.

Let us fix λ, λ1, . . . , λq ∈ Λ. For all j ∈ {0, . . . , p} and i ∈ {1, . . . , q}, we
have

Sni,λi(ej) =
θj(λi)
θni+j(λi)

eni+j.

By condition (1), one can write

θj(λi)
θni+j(λi)

≤ Mp
θni+j(a)
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for some constant Mp depending only on p. Since, by our additional assump-
tion in (2ii), all series

∑
n∈A(1/θn+j(a))en+j , j ∈ {0, . . . , p} are unconditionally

convergent, it follows that
∑q

1 Sni,λi(u) ∈ O if N is large enough. This proves the
first half of (b) in Lemma 4.1.

Similarly, if i′ > i, then

Tni,λSni′ ,λi′ (ej) =
θni,j+ni′−ni(λ)
θni′ ,j(λi′)

ej+ni′−ni .

If moreover λ ≤ λi′ , then

θni,j+ni′−ni(λ)
θni′ ,j(λi′)

≤ 1
θni′−ni,j(λi′)

≤ θj(a)
θj+ni′−ni(a)

,

because all functionswk are nondecreasing. Using (2), we conclude that condition
(b) in Lemma 4.1 is satisfied if N is large enough. ❐

Corollary 4.10. The operators Tλ have a residual set of common hypercyclic
vectors as soon as the following properties are satisfied.
(a) All functions log(wn) are nondecreasing, and Lipschitz on compact sets with uni-

formly bounded Lipschitz constants.
(b) All series

∑
n 1/(w1(λ)× · · · ×wn(λ))en are convergent.

Proof. This follows at once from Theorem 4.7: one may take A = B = N. ❐

From this, one gets the following extension of the Abakumov-Gordon result.

Corollary 4.11. Let w = (wn) be an admissible weight sequence, and put

λw = inf
{
λ > 0 | the series

∑
n

λ−n

w1 × · · · ×wn
en converges in X

}

If Tw is the weighted shift associated tow, then
⋂
λ>λw HC(λTw) is a dense Gδ subset

of X.

Example 4.12. X = `p(N) or c0(N) and Λ is a single point; so, we just
consider a single weighted shift Tw onX. Then condition (1) is vacuously satisfied,
as well as (2iii) for any set of integers A. It is easy to check that (2i), (2ii) hold if
and only if

sup
n
w1 × · · · ×wn = ∞,

which is Salas’ necessary and sufficient condition for hypercyclicity.

Example 4.13. X = `p(N) or c0(N), wn(λ) = 1+ λ/n, λ > 0. Since

log(w1(λ)× · · · ×wn(λ)) ∼ λ log(n)

for each λ > 0, we get common hypercyclic vectors for all λ > 1/p in the `p case,
and for all λ > 0 in the c0 case. This improves an example given in [9].
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Example 4.14. X = H (C), en = zn, wn(λ) = λcn, λ > 0, where (cn) is a
sequence of positive numbers such that supn c

1/n
n < ∞ and (c1 · · · cn)1/n → ∞.

This includes the case λD, where D is the differentiation operator (cn = n).

5. TRANSLATION-DILATION OPERATORS

In this section, we consider parameterized sequences of translation-dilation oper-
ators on the space of entire functions H (C). The parameter space Λ is a subset of
R2, and for each λ = (s, t) ∈ Λ, the sequence Tλ = (Tn,λ) is given by

Tn,λu(z) = an(s)u(z + bn(t)),

where bn(t) ∈ C and an(s) > 0.
In order to motivate the hypotheses of Theorem 5.1 below, let us explain

briefly how the basic criterion can be used to show that the translation operators

Tλf(z) = f(z + eit), t ∈ [0; 2π[

have common hypercyclic vectors (which was proved in [9]). Let K = [a;b] be a
compact subinterval of [0; 2π[. Choose a subdivision a = λ0 < λ1 < · · · < λq =
b such that λi − λi−1 < τ/(Ni) for all i ∈ {1, . . . , q}, where τ > 0 and N ∈ N∗
have to be specified; this can be done because the series

∑
1/i is divergent. Then

put Λi = [λi−1;λi] and ni = Ni. Assume the given neighbourhood of 0 has the
form O = {u ∈ H (C) | sup|z|≤A < ε}. Then the first condition in (iii) of the
basic criterion is fulfilled if τ is small enough. Moreover, if N is large enough,
then the sets D̄(0, A)+NiK are pairwise disjoint, so that Runge’s theorem can be
applied to get a polynomial p with the required properties.

Using in essence the same ideas, we are now going to prove a more general
result for translation-dilation operators.

We shall say that a pair of series of nonnegative numbers (
∑
αn,

∑
βn) is

strongly divergent if, for each positive number C, one can find nonempty finite sets
of integers F1 < F2 · · · such that
� ∑∞

k=1 infn∈Fk βn = ∞;
� infk≥1

∑
n∈Fk αn > C.

For example, the pair (
∑

1/ logn,
∑

1/n) is strongly divergent. To see this,
put Fk = ]Nk;Nk+1], where Nk is the integral part of 2Ck logk. On the other
hand the pair (

∑
1/nα,

∑
1/n) is not strongly divergent if α > 0.

Theorem 5.1. Assume that the parameter space Λ is a countable union of rectan-
gles I × J for which the following properties hold true.
(1) All functions an, bn are Lipschitz.
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(2) For each closed disk E = D̄(0, R) ⊂ C, one can find a positive integer N such that
� bn(J) ∩ E = ∅ if n ≥ N and (E + bn(J)) ∩ (E + bm(J)) = ∅ if
|n−m| ≥ N;

� C \ (E + bn(J)) is connected, for each n ≥ N.

(3) Putting αn = 1/Lip(logan) and βn = 1/Lip(bn), the pair of series
(
∑
αn,

∑
βn) is strongly divergent.

Then
⋂
λ∈Λ Univ(Tλ) is a dense Gδ subset of H (C).

Proof. We may assume that Λ is a compact rectangle I× J for which (1), (2),
(3) are satisfied. We apply the basic criterion, with D =H (C). So let us fix some
neighbourhood of 0 in H (C), say O = {f ∈ H (C) : ‖u‖E < ε}, where E is a
closed disk centered at 0 and ‖f‖E = supE |f |. Let us also fix u, v ∈H (C).

Let N be the positive integer given by (2), and let η, η′ be small positive
numbers. Since the pair of series (

∑
αn,

∑
βn) is strongly divergent, one can find

nonempty finite sets of integers F1 < · · · < Fd such that

� ∑d
k=1 infn∈Fk βn > |J|/η′,

� ∑
n∈Fk αn > |I|/η′ for each k ∈ {1, . . . , d}.

It follows that if η′ is small enough, then:
(a) one can partition the interval J into intervals J1, . . . , Jd such that Lip(bn)×

|Jk| ≤ η for each k ∈ {1, . . . , d} and all n ∈ Fk;
(b) for each k ∈ {1, . . . , d}, one can partition the interval I into subintervals Ik,n,

n ∈ Fk, such that Lip(logan)× |Ik,n| ≤ η for all n ∈ Fk.
Moreover, by taking some arithmetical progression of the sets Fk, subdividing

each set Fk into N pieces and replacing η′ by Nη′, we may also assume that
infF1 ≥ N and |n−m| ≥ N whenever n,m are distinct integers from F1∪· · ·∪
Fd. Here, N is the positive integer given by (2).

Now, let Λ1, . . . , Λq be an enumeration of all rectangles Ik,n × Jk, k ∈
{1, . . . , d}, n ∈ Fk. By definition, we have

⋃
iΛi = Λ. For each i ∈ {1, . . . , q},

choose any point λi = (si, ti) ∈ Λi, and put ni = n, where i corresponds to the
pair (k,n). We show that one can find p ∈ H (C) such that conditions (ii), (iii)
in the basic criterion are satisfied.

Put F = F1 ∪ · · · ∪ Fd. By condition (2), one can apply Runge’s Theorem to
get some function p ∈H (C) such that
� |p(z)− v(z)| < ε on E;
� |p(z)− Sni,λiu(z)| < ε/ infani(J) on E + bni(J), for each i ∈ {1, . . . , q}.
By its very definition, this function p satisfies (ii) and the second half of (iii)

in the basic criterion.
It remains to show that one can ensure Tni,λSni,λi(u) − u ∈ O for each

i ∈ {1, . . . , q} and all λ = (s, t) ∈ Λi. Now, we have

Tni,λSni,λiu(z)−u(z) =
(
ani(s)
ani(si)

− 1

)
u(z + bni(t)− bni(ti)),
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so that, by (a), (b) above, we get the desired result if η is small enough. ❐

Example 5.2. Theorem 5.1 can be applied to the family of operators

Tn,(s,ζ) = nsτnζ, s ≥ 0, ζ ∈ T,

where τw is the operator of translation by w. Identifying ζ = eit ∈ T with
t ∈ [0; 2π[, the space of parameters is Λ = R+ × [0; 2π[, and an(s) = ns ,
bn(t) = neit . Conditions (1) and (2) are obviously satisfied, and (3) is satisfied
as well since αn = 1/ logn and βn = 1/n. Actually, one can even consider
operators of the form cnnsτnζ , where (cn) is an arbitrary (but fixed) sequence
of positive numbers. This answers a question of Costakis raised in [8], where
the one-parameter family Tn,s = nsτn was considered. Proceeding as in [8], one
obtains in fact the existence of a common universal vector for the three parameter
family Tn,(s,r ,ζ) = nsτnrζ , with s ≥ 0, r > 0 and ζ ∈ T.

6. CONCLUDING REMARKS

We conclude this paper by some simple remarks concerning the size or the shape
of a set of parameters allowing common universality.

First, we show that under quite general assumptions, there is always a very
large set of parameters on which common universality does occur. Here, we are
again in the general case of parameterized sequences of operators (Tλ)λ∈Λ, whereΛ is a topological space and Tn,λ(x) depends continuously on (x, λ), for each
n ∈ N.

Remark 6.1. Assume Univ(Tλ) is residual for each λ ∈ Λ (in particular, this
holds if each sequence Tλ is the sequence of iterates of a hypercyclic operator Tλ).
If the topological space Λ is second countable and is a Baire space, then there exists
a dense Gδ set G ⊂ Λ such that

⋂
λ∈GUniv(Tλ) ≠∅.

Proof. It is easy to check that the set

G := {(x, λ) | x ∈ Univ(Tλ)}

is a Gδ subset of X × Λ. In particular, G has the Baire property in X × Λ. By
assumption, for each λ ∈ Λ, the λ-section of G is a dense Gδ subset of X. By the
classical Kuratowski-Ulam Theorem (see [14]), this implies that for comeagerly
many points x ∈ X, the x-section of G is comeager in Λ. In particular, there
exists at least one point x ∈ X such that G := Gx is comeager in Λ, which is the
desired result. ❐

Next, we consider the case of weighted shifts whose weight sequence consists only
in 1’s and 2’s. Here, the parameter space is W = {1; 2}N∗ . For each w ∈ W,
we denote by Tw the weighted shift associated to w, acting on X = c0(N) or
`p(N). The following result shows that common hypercyclicity occurs on a set of
parameters which is very large both in the Baire Category sense and in the measure
sense.
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Remark 6.2. Let m the canonical product measure on W. There exists a Gδ
set H ⊂W such that m(W \H) = 0 and

⋂
w∈H HC(Tw) ≠∅.

Proof. An elementary computation shows that ifF is a closed subset ofW×X
and ε > 0, then the set

{x ∈ X |m({w | (w, x) ∈ F}) < ε}

is open in X. It follows that for each nonempty open set V ⊂ X, the set

GV := {x ∈ X | ∀aew ∈W ∃n : Tnw(x) ∈ V},

is a Gδ subset of X. Here, ∀ae means “for m-almost all.” By the Baire Category
Theorem, it is therefore enough to show that each set GV is dense in X: once
this is done, just pick any point x ∈ ⋂

p GVp , where (Vp) is a countable basis
of open sets for X, and put H = {w | x ∈ HC(Tw)}. Thus, we have to show
that GV ∩ U ≠ ∅ for each pair of nonempty open sets (U,V); and of course, we
may assume that U = B(u, ε) and V = B(v, ε), where u, v are finitely supported
vectors and ε > 0.

Let (ei)i∈N be the canonical basis of X. The powers of a weighted shift Tw
act on X in the following way: for all x = ∑∞

0 xiei ∈ X and j ∈ N, we have

〈e∗j , Tnw(x)〉 = 2pn,j(w)xj+n,

where pn,j(w) is the number of 2’s in the sequence w between coordinates j + 1
and j +n.

Let d be a positive integer such that u and v are supported on {0, . . . , d},
and let N > d be a large positive integer. It follows from the classical theory of
random walks (see [10]) that if we put

Ak = {w ∈W | p2kN,0(w) = · · · = p2kN,d(w) = kN},

then almost every point w ∈ W belongs to infinitely many sets Ak, k ∈ N∗. We
put A = ⋃

k Ak, so that m(W \ A) = 0. Now, we define x = ∑∞
0 xiei ∈ X as

follows.
� xj = uj for all j ∈ {0, . . . , d};
� xi = 2−kNvj if i = j + 2kN for some j ∈ {0, . . . , d} and k ∈ N∗;
� xi = 0 otherwise.
It is clear that ‖x − u‖ < ε if N is large enough, so that x ∈ U . Moreover,

it is also clear that if N is large enough and w ∈ Ak for some k ∈ N∗, then
‖TkNw (x) − v‖ < ε. Since m(W \ A) = 0, it follows that x ∈ GV if N is large
enough. This concludes the proof. ❐

Finally, let us consider the rather intriguing case of direct sums of shifts. Let B be
the usual backward shift on `2(N). By Salas’ criterion, the direct sum Bs,t := sB⊕
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tB is hypercyclic provided s, t > 1. Thus, one can look for common hypercyclicity
results for those operators Bλ, λ = (s, t) ∈ Λ0 := ]1;∞[× ]1;∞[.

If one wants to prove that all operators Bλ, λ ∈ Λ0 have a common hy-
percyclic vector, one may try to apply the 2-dimensional criterion described at
the end of Section 2. However, it is immediately seen that this does not work:
with the notations of Remark 2.2, the order of magnitude of Cn(u) is n, hence∑∞

0 1/Cn(u)2 < ∞. The following result, which is due to A. Borichev, is therefore
quite natural.

Remark 6.3. If Λ ⊂ Λ0 is such that
⋂
λ∈ΛHC(Bλ) ≠∅, then Λ has Lebesgue

measure 0.

Proof. Assume that
⋂
λ∈ΛHC(Bλ) ≠ ∅, and choose a common hypercyclic

vector p = x ⊕ y ∈ `2(N) ⊕ `2(N). Then, for each λ = (s, t) ∈ Λ, one
can approximate the vector e0 ⊕ e0 by vectors of the form snBn(x) ⊕ tnBn(y).
In particular, looking at the first coordinates, one can find n ∈ N∗ such that
|snxn − 1| and |tnyn − 1| are arbitrarily small. Then xn and yn have positive
real parts, and putting an = −(1/n) log(Rexn), bn = −(1/n) log(Reyn), we
see that n| log(s)−an| and n| log(t)−bn| are arbitrarily small. Thus, we see that
for each ε > 0, the set log(Λ) := {(log(s), log(t)) | (s, t) ∈ Λ} can be covered by
a sequence of squares Cni with respective sides not greater than ε/ni. It follows
that log(Λ) has Lebesgue measure 0, which concludes the proof. ❐

On the other hand, we also have a positive result if the set Λ has a a particular
shape. As in Section 2, let us define a monotonic Lipschitz curve to be the image
of a Lipschitz arc γ : I → R2 whose coordinates are both nondecreasing or both
nonincreasing.

Remark 6.4. If Λ ⊂ Λ0 can be covered by countably many monotonic Lips-
chitz curves, then

⋂
λ∈ΛHC(Bλ) is a dense Gδ subset of `2(N)⊕ `2(N).

Proof. As usual, it is enough to consider the case of a single monotonic Lip-
schitz curve. Let us denote by ≤ the product ordering R2. Proceeding exactly as
in the proof of Proposition 4.2, one checks that the hypotheses of Lemma 2.3 are
satisfied. Therefore, one can apply the generalized form of the one-dimensional
criterion mentioned at the end of Section 2. ❐

Thus, we have common hypercyclicity of the operators Bλ when the parameter setΛ is the graph of a nondecreasing Lipschitz function. In particular, the operators
sB⊕sB have common hypercyclic vectors. It is tempting (although this is probably
irrelevant) to hope to find a link with one of the most famous open problems in
the area: is T ⊕ T hypercyclic whenever T is?

On the other hand, we don’t know what to say when Λ is the graph of a
nonincreasing Lipschitz function. For example, we are unable to decide whether⋂

2≤s≤3HC(B(s,4−s)) is nonempty. This is a bit surprising, and rather irritating.
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To conclude this paper in a more optimistic fashion, let us point out briefly
some possible connections with descriptive set theory. We turn back to the gen-
eral case of a family of hypercyclic operators (Tλ)λ∈Λ acting on a separable Fréchet
space X. We assume that the parameter space Λ is a Polish space, that is, a sepa-
rable, completely metrizable topological space, and that Tλ(x) depends continu-
ously on (λ,x) ∈ Λ × X. We also assume that the operators Tλ commute with
each other.

Let us denote by I the family of all compact sets K ⊂ Λ such that

⋂
λ∈K

HC(Tλ) ≠∅.

It is easily checked that if K ⊂ Λ is compact, then
⋂
λ∈K HC(Tλ) is a Gδ subset

of X. Moreover, if K ∈ I then, by our commutativity assumption, this set is also
dense in X. By the Baire Category Theorem, it follows that the family I is closed
under countable unions. In other words, I is a σ -ideal of compact sets, a kind
of objects for which there is by now a well-developed theory (see e.g. [15]). It is
easy to check that the σ -ideal I is Gδ in K(Λ), the space of all compact subsets
of Λ equipped with the (Polish) topology induced by the Hausdorff metric. Thus,
from the point of view of descriptive set theory, I is a very simple object. Turning
back to direct sums of shifts, this allows us to think that it is not completely
hopeless to seek for an explicit, “geometrical” characterization of those compact
sets K ⊂ ]1;∞[× ]1;∞[ for which

⋂
(s,t)∈K HC(sB ⊕ tB) ≠∅.
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pp. Exp. No. 13-14, 43. MR 604395 (82j:60067) (French)
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