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INFINITE GAMES, BANACH SPACE GEOMETRY
AND THE EIKONAL EQUATION

R. DEVILLE and É. MATHERON

Abstract

We study a class of infinite games which turns out to be closely related to Banach space geometry. Using one
of these games, we construct a bounded, differentiable, almost everywhere solution of the Eikonal equation
‖∇u‖ = 1 on R

d, with d � 2.

1. Introduction

It is well known that derivative functions have many interesting properties. The following
beautiful result goes back to A. Denjoy: if u : R → R is everywhere differentiable, then, for
any open set U ⊂ R, the set {x : u′(x) ∈ U} is either empty or has positive Lebesgue measure;
this property of derivatives is usually called the Denjoy–Clarkson property. The problem of
extending Denjoy’s result to functions of several variables was raised in the 1960s by C. E. Weil
[11], and since then it has been known as the Weil gradient problem. This problem was solved
in 2002 by Z. Buczolich [3], who constructed an everywhere differentiable function u : R

2 → R

such that ∇u(0) = 0 but ‖∇u(x)‖ � 1 for almost all points x ∈ R
2; to see that ∇u fails the

Denjoy–Clarkson property, just consider the open unit ball U ⊂ R
2.

The function u above is the limit of a sequence of smooth functions (sn), and in order to
ensure the differentiability of u, one needs to ‘force’ the sequence (∇sn) to converge at each
point. Buczolich’s original arguments are very intricate, and they have been greatly simplified
by J. Malý and M. Zelený [9]. The key new tool introduced in [9] is the following very interesting
infinite game. There are two players, I and II. Player I starts the game by playing a point
a0 in the open unit ball of R

2. Player II answers by playing a line L0 ⊂ R
2, which must pass

through the point a0. Then player I plays a point a1 in the open unit ball, which must belong
to the line L0. Player II answers with a line L1 passing through a1, and so on. Player II wins
if the infinite sequence (an) produced by the game is convergent in R

2. This game is called the
point–line game in [9]. One of the main results of [9] is that player II has a winning strategy
in the point–line game, which is exactly what is needed to simplify Buczolich’s proof.

In the present paper, we study some more general versions of the point–line game. Instead
of R

2, one can consider a Banach space X. In this setting, the obvious analogue of the point–
line game should now be called the point–hyperplane game for the open unit ball BX . Rather
unexpectedly, it turns out that this is not merely a formal generalization, and that the point–
hyperplane game is in fact closely related to the geometry of the underlying Banach space X.
Indeed, we show that player II has a winning strategy in the point–hyperplane game for BX

if, and only if, X has the Radon–Nikodym property (RNP).
At first sight, the appearance of the Radon–Nikodym property may look a bit surprising, but

it becomes quite natural if one decides to change the rule of the game by requiring player II to
play slices of the unit ball rather than hyperplane sections. More explicitly, the new rule is the
following: player I starts the game by playing a point a0 ∈ BX , player II answers with a closed
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half-space S0 containing a0 as a boundary point, player I then plays a point a1 ∈ BX ∩ S0, and
so on. Since all the half-spaces played by II determine slices of the open unit ball, we call this
modified game the point–slice game for BX . Formally, the point–slice game is more difficult
to win for player II than the point–hyperplane game, since it gives more freedom to player I.
Yet, we show that if X has the RNP, then II has a winning strategy in that game as well.

If the Banach space X is very well behaved, one can get a stronger conclusion. Indeed, we
show that if X has a uniformly convex renorming, then player II even has a winning tactic
in the point–slice game, that is, a winning strategy in which at each step, the answer to the
points a0, . . . , an already played by I depends only on the last move an. In other words, one can
associate to each point a ∈ BX a closed half-space S(a) containing a as a boundary point in such
a way that, whatever the moves of player I in the point–slice game may be, player II is sure to
win if she answers S(an) to each move an of player I. Put in a slightly different way, this means
that one can associate to each point a ∈ BX a linear functional Φa ∈ X∗ in such a way that
the following property holds true: each sequence (an) ⊂ BX satisfying 〈Φan

, an+1〉 � 〈Φan
, an〉

for all n ∈ N is convergent. This can be viewed as a Banach space version of the fact that each
bounded monotonic sequence of real numbers is convergent.

One may also consider other games of the same type, where player II is required to play
members of some fixed family A of affine subspaces of X. When A is the family of all finite-
codimensional affine subspaces of X, this leads to another well-known Banach space property,
namely the point of continuity property (PCP). We show that player II has a winning strategy
in the point–finite-codimensional subspace game for BX if and only the Banach space X has
the PCP.

Note that even in R
2, the existence of a winning strategy for player II in the point–line game

or the point–slice game for the unit ball is a non-trivial result. At first sight, one might think
that player II should win by answering to each play an 
= 0 of player I the line L(an) passing
through an and orthogonal to Ran. This is indeed natural because among all line sections of
the unit ball passing through an, the one with smallest diameter is precisely L(an). However,
this ‘orthogonal strategy’ does not work. Indeed, let us define a sequence (an) as follows: in
polar coordinates, an is given by (rn, θn), where

rn =
∞∏

k=n+1

cos
(

1
k

)
and θn =

n∑
k=1

1
k
,

with the convention θ0 = 0. Since the line L(an) is given in polar coordinates by

r =
rn

cos(θ − θn)
,

we see that an+1 ∈ L(an) for all n. Thus, if player II follows the orthogonal strategy, then
player I is allowed to play a0, a1, . . .. But since rn tends to 1 and the sequence (θn) goes slowly
to +∞, the sequence (an) is not convergent. Thus, player I has won the game.

Incidentally, this example shows that player II can lose the point–slice game even if she
plays slices of the unit ball whose diameters tend to 0. Of course, II can sometimes win if the
diameters of the slices do not tend to 0, for example if I decides to lose by always playing
the same point. Notice also that a strategy for player II which would always produce a non-
increasing sequence of slices cannot be winning for II. Indeed, assume that player II follows
such a strategy S. Then I can force II to play always the same slice, simply by choosing at each
step the point an+1 on the boundary of the half-space Sn just played by II. Thus, choosing
any point a0 and then a point a1 
= a0 on the boundary of S(a0), player I wins the game if she
plays alternatively the two points a0, a1.

The paper is organized as follows.
The first two parts deal with games. We first consider very abstract ‘point–set’ games and

prove two general results concerning the existence of winning strategies or tactics for player II.
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Then we apply these results in the Banach space setting. As explained above, this leads to
characterizations of the Radon–Nikodym property and the point of continuity property, and to
the existence of a winning tactic for player II in the point–slice game if the underlying Banach
space X has a uniformly convex renorming.

In the final part, we elaborate a bit on Buczolich’s example and we prove the following slightly
stronger result: if d � 2, then there exists a bounded differentiable function u : R

d → R such
that ∇u(0) = 0 and u satisfies the Eikonal equation ‖∇u(x)‖ = 1 almost everywhere; here,
‖ · ‖ is an arbitrary norm on R

d. More generally, we prove that if Ω is an open subset of R
d,

with d � 2, and if x0 ∈ Ω is given, then there exists a 1-Lipschitz function u : Ω → R, which is
bounded and differentiable at every point of Ω, such that ∇u(x0) = 0 and ‖∇u(x)‖ = 1 almost
everywhere in Ω; moreover, u satisfies the boundary condition u|∂Ω = 0. Thus, the Eikonal
equation admits some rather exotic almost everywhere solutions, very different from the usual
viscosity solution dist( · , ∂Ω), which is not everywhere differentiable.

2. Abstract games

Let (E, d) be a (non-empty) metric space, and for each point x ∈ E, let A(x) be a (non-
empty) family of subsets of E containing x. We denote by A the disjoint union of all families
A(x), and we define a game G(E,A) as follows. There are two players, I and II. Player I plays
points a0, a1, . . . ∈ E, and player II plays sets A0, A1, . . . ⊂ E. Once player I has played a
point an, player II must choose a set An ∈ A(an). Then, player I must choose the point an+1

inside An. Player II wins if the sequence (an) is d-Cauchy, otherwise player I wins.

Theorem 2.1. Assume there exists a family C of subsets of E such that the following
properties hold:

(0) ∅, E ∈ C;
(1) C is closed under intersections;
(2) if C1, C2 ∈ C satisfy C1 ⊂ C2 and C2 \ C1 
= ∅ then, for each ε > 0, one can find C ∈ C

such that C1 ⊂ C ⊂ C2, C2 \ C 
= ∅ and diam(C2 \ C) < ε;
(3) for each C ∈ C and each point x ∈ E \ C, there exists A ∈ A(x) such that A ∩ C = ∅.

Then player II has a winning strategy in the game G(E,A).

The proof is based on the following lemma, which follows easily from (1) and (2). If I is a
set, we denote by I<ω the set of all finite sequences of elements of I. If s ∈ I<ω and i ∈ I, the
sequence ‘s followed by i’ is denoted by s ∗ i. If I is a well-ordered set and s ∈ I<ω has the
form t ∗ i, where i ∈ I has a predecessor i− in I, we denote by s− the sequence t ∗ i−, and we
say that s− is the predecessor of s. This is indeed the predecessor of s in the ordering of I<ω

defined by putting the lexicographic ordering on each set In, with n ∈ N and declaring that
two sequences are comparable only if they have the same length. Finally, we denote by |s| the
length of a sequence s ∈ I<ω.

Lemma 2.2. There exist some ordinal η and a family (Cs)s∈η<ω of subsets of E such that:

(o) Cs ∈ C for each s ∈ η<ω, with C∅ = ∅;
(i) Cs∗0 = E for each s ∈ η<ω;
(ii) for each s ∈ η<ω, the transfinite sequence (Cs∗ξ)ξ<η is non-increasing, with

⋂
ξ<λ Cs∗ξ =

Cs∗λ for limit ordinals λ;
(iii)

⋂
ξ<η Cs∗ξ = Cs for each s ∈ η<ω;

(iv) if s ∈ η<ω has a predecessor, then diam(Cs− \ Cs) < 2−|s|.
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Proof. Let η be a limit ordinal greater than the cardinal number of E. Using (1) and
(2), one can construct a non-increasing transfinite sequence (Cξ)ξ<η ⊂ C such that C0 = E,⋂

ξ<λ Cξ = Cλ for limit ordinals λ, and Cξ \ Cξ+1 
= ∅, diam(Cξ \ Cξ+1) < 2−1 if Cξ 
= ∅. For
cardinality reasons, we have

⋂
ξ<η Cξ = ∅. Thus, we have found our sets Cs for all sequences

s ∈ η<ω of length 1. Clearly, this process can be repeated, so that one can construct Cs for all
s ∈ η<ω by induction on the length of a sequence s.

Proof of Theorem 2.1. Let (Cs)s∈η<ω be the family of sets given by Lemma 2.2. Notice that if
s ∈ η<ω and a ∈ E \ Cs, then, by (iii) there exists a smallest ordinal ξ < η such that a 
∈ Cs∗ξ,
and by (i) and (ii) this ordinal is a successor ordinal. It follows that for each point a ∈ E,
there is a uniquely defined sequence of successor ordinals s(a) = (ξ0(a), ξ1(a), . . .) ∈ ηω such
that a ∈ C(s(a)|n)− \ Cs(a)|n for each non-zero n ∈ ω. Explicitly, ξ0(a) = min{ξ < η : a 
∈ Cξ}
and ξn+1(a) = min{ξ : a 
∈ Cs(a)|n∗ξ}. The strategy of player II is defined as follows: once I
has played an, II chooses a set An ∈ A(an) such that An ∩ Cs(an)|n = ∅. This is possible by
condition (3) above.

Let a0, A0, a1, A1, . . . be a run of the game G(E,A), where II has played according to his
strategy. Observe that if k � n, then Cs(a)|k ⊂ Cs(a)|n for all a ∈ E: this follows from (iii). Since
an+1 ∈ An, it follows that an+1 
∈ Cs(an)|k whenever k � n. Consequently, for each fixed k ∈ ω,
the sequence (s(an)|k)n�k is non-increasing in the well-ordered set ηk, and hence stationary.
Thus, we get an infinite sequence of successor ordinals s ∈ ηω such that, for each fixed k ∈ ω,
we have an ∈ C(s|k)− \ Cs|k for all large enough n. By (iv), this implies that the sequence (an)
is Cauchy. Thus, player II has won the game.

The proof of Theorem 2.1 shows that player II has a winning strategy of a very special type:
at step n of the game, the set An depends only on n and on the nth move of player I. In
other words, the strategy of player II is given by a sequence of tactics: there is a sequence of
maps tn : E → A such that II wins the game by answering tn(an) when I has played an. By
strengthening condition (3) in Theorem 2.1, one can ensure that player II has in fact a single
winning tactic in the game G(E,A). This is the content of the next theorem. We shall say that
a sequence (Dn) of subsets of E accumulates to some point x ∈ E if every neighbourhood of x
contains all but finitely many sets Dn.

Theorem 2.3. Assume that the metric space (E, d) is bounded, and that there exist a point
a ∈ E and a sequence (Cn)n∈N of families of non-empty subsets of E satisfying the following
properties:

(0) Cn ⊂ Cn+1 and B(a, r) ∈ Cn for all r � 0;
(1) if (Ci)i∈I is a family of members of Cn such that

⋂
i Ci has non-empty interior, then⋂

i Ci ∈ Cn;
(2) if K1 ∈ Cn and K2 ∈ ⋃

p∈N
Cp satisfy K1 ⊂ K2 and K2 \K1 
= ∅, then, for each ε > 0,

one can find K ∈ Cn+1 such that K1 ⊂ K ⊂ K2, K2 \K 
= ∅ and diam(K2 \K) < ε;
(3) if (Cn) is a non-decreasing sequence of subsets of E with Cn ∈ Cn for all n such that

(Cn+1 \ Cn) accumulates to some point x ∈ E \ ⋃
n Cn, then one can find A ∈ A(x) such

that A ∩ ⋃
n Cn = ∅.

Then player II has a winning tactic in the game G(E,A).

The proof is based on the following lemma, which is very similar to Lemma 2.2.

Lemma 2.4. There exist some ordinal η and a family (Cs)s∈η<ω of subsets of E such that:

(o) Cs ∈ C|s| for all s ∈ η<ω, with C∅ = {a};
(i) Cs∗0 = Cs− if s ∈ η<ω has a predecessor, and Cs∗0 = E otherwise;
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(ii) for each s ∈ η<ω, the transfinite sequence (Cs∗ξ)ξ<η is non-increasing, with
⋂

ξ<λ Cs∗ξ =
Cs∗λ for limit ordinals λ;

(iii)
⋂

ξ<η Cs∗ξ = Cs for each s ∈ η<ω;

(iv) if s ∈ η<ω has a predecessor, then diam(Cs− \ Cs) < 2−|s|.

Proof. Let η0 be any limit ordinal greater than the cardinal number of E, and put η = η0 · ω.
Let us also choose τ > 0 such that E = B(a, τ). We first define the sets Cξ for all ordinals ξ < η0
in such a way that

⋂
ξ<η0

Cξ = B(a, τ/21). By (i), we must put C0 = E. Assume that
Cξ has been defined, with Cξ ∈ C1 and B(a, τ/21) ⊂ Cξ. If Cξ 
= B(a, τ/21), we use (2) with
K2 = Cξ, K1 = B(0, τ/21), and ε = 2−1. Since K1 ∈ C0, this gives a set K = Cξ+1 ∈ C1.
Then (iv) is satisfied. If Cξ is already equal to B(a, τ/2), we put Cξ+1 = Cξ. If λ is a limit
ordinal, we have to put Cλ =

⋂
ξ<λ Cξ; then Cλ ∈ C1 by property (1), since all sets Cξ already

constructed contain B(a, τ/2). This defines the sets Cξ for all ξ < η0, and by definition of η0,
we have

⋂
ξ<η0

Cξ = B(a, τ/2). Now, we put Cη0 = B(a, τ/2) and we define the sets Cξ for
η0 � ξ < η0 · 2 in exactly the same way, replacing B(a, τ/21) by B(a, τ/22) ∈ C0. Continuing
in that way, we construct the sets Cξ for all ξ < η. It should now be clear how to produce the
whole family (Cs)s∈η<ω , by induction on the length of a sequence s ∈ η<ω.

Proof of Theorem 2.3. Let (Cs)s∈η<ω be the family of sets given by Lemma 2.4. By (i),
(ii) and (iii), one can associate to each point x ∈ E \ {a} a uniquely defined sequence of
successor ordinals s(x) = (ξ0, ξ1, . . .) such that x ∈ C(s(x)|n)− \ Cs(x)|n for each n � 1. We put
Cn(x) = Cs(x)|n , with n � 1. By (iii) the sequence (Cn(x)) is non-decreasing, and x 
∈ ⋃

n Cn(x).
Moreover, since x ∈ C(s(x)|n)− \ Cn(x) and Cn+1(x) ⊂ C(s(x)|n)− for all n by (i) and (ii), it
follows from (iv) that the sequence (Cn+1(x) \ Cn(x)) accumulates to x. Hence, by (o) and
property (3), one can find a setA(x) ∈ A(x) such thatA(x) ∩ ⋃

n Cn(x) = ∅. We put t(x) = A(x)
for all x ∈ E \ {a}. Finally, we choose t(a) to be any member of A(a). This defines the tactic
of player II. If a0, t(a0), a1, t(a1), . . . is a run of the game G(E,A) where II follows this tactic,
then either an = a for all n � 0, in which case II has won, or an 
= a after some time because
a 
∈ t(x) if x 
= a. In that case, the same proof as in Theorem 2.1 shows that II has also won.

Remark 1. The reader may feel a bit unsatisfied when looking at Theorems 2.1 and
2.3 together, since the conclusion in Theorem 2.3 is stronger than that in Theorem 2.1 but
some hypotheses are not. Indeed, in Theorem 2.3 the setting is formally more general than in
Theorem 2.1 since one considers a sequence (Cn) rather than a single family C, and condition
(2) in Theorem 2.3 is weaker than the corresponding one in Theorem 2.1. However, looking at
the proof of Theorem 2.3 and with the same notation, it is easy to convince oneself that player
II has a winning strategy when conditions (0), (1), (2) of Theorem 2.3 are satisfied and (3) is
replaced by the following weaker assumption: if C ∈ ⋃

n Cn and x ∈ E \ C, then one can find
A ∈ A(x) such that A ∩ C = ∅. Thus, one could formulate explicitly a variant of Theorem 2.1
which would be more closely related to Theorem 2.3. However, Theorem 2.1 as stated is just
what we need for the applications we have in mind, while we have no interesting example to
illustrate the modified version.

3. Banach space setting

For all background material concerning Banach space geometry, we refer to the books [1]
and [4].

Let X be a real Banach space. If E is a subset of X, a closed slice of E is the intersection of
E with a closed half-space of X; open slices of E are defined similarly. A hyperplane section
of E is the intersection of E with a closed hyperplane of X. For each point x ∈ E, we denote
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by H(x) the family of all hyperplane sections of E containing x, by Sc(x) the family of all
closed slices of E of the form S ∩ E, where S is a closed half-space containing x as a boundary
point, and by So(x) the family of all open slices of E containing x. The corresponding games
G(E,H), G(E,So) and G(E,Sc) are called the point–hyperplane game for E, the point–open
slice game for E, and the point–closed slice game for E.

Notice that the point–closed slice game is clearly more difficult to win for player II than the
point–hyperplane game. Moreover, a moment of thought reveals that if player II has a winning
strategy in the point–open slice game, then she also has one in the point–closed slice game.
Finally, it is clear that if E1 ⊂ E2, then the games in E1 are easier to win for player II than
the games in E2.

3.1. The Radon–Nikodym property

Recall that a closed bounded convex set K ⊂ X is said to have the Radon–Nikodym property
(RNP) if every bounded linear operator T : L1(Ω, μ) → X sending the positive unit sphere of
L1(Ω, μ) into K can be represented by an element of L∞(Ω, μ,X); here, (Ω, μ) is an arbitrary
probability space. The Banach space X has the RNP if its closed unit ball has. Among the
many beautiful characterizations of this property, we shall of course use the following one: the
convex set K has the RNP if and only if each non-empty subset of K has non-empty open
slices with arbitrarily small diameter.

Theorem 3.1. Let K ⊂ X be a (non-empty) bounded closed convex set. Then the point–
open slice game for K is determined, and player II has a winning strategy if and only if K has
the Radon–Nikodym property. More precisely:

(a) if K has the RNP, then II has a winning strategy;
(b) if K does not have the RNP, then there exists ε > 0, and a strategy for player I such

that each run of the game where I plays according to this strategy produces a sequence
(an) such that ‖an+1 − an‖ > ε for all n ∈ N.

Proof. Assume that K has the Radon–Nikodym property. Let C be the family of all closed
convex subsets of K. We check that C and A = So satisfy the assumptions of Theorem 2.1.
Condition (1) is obviously satisfied, and (3) follows from the Hahn–Banach theorem. To prove
that (2) is also satisfied, let us fix C1, C2 ∈ C with C1 ⊂ C2 and C2 \ C1 
= ∅. By the Hahn–
Banach theorem, one can find x∗ ∈ X∗ and α < β such that

C1 ⊂ {x : 〈x∗, x〉 � α} and C2 ∩ {x : 〈x∗, x〉 > β} 
= ∅.
Since the set C2 has the RNP by assumption on K, it follows from Stegall’s variational principle
[10] that one can approximate x∗ by y∗ ∈ X∗ strongly exposing some point of C2. If y∗ is close
enough to x∗, then

C1 ⊂ {x : 〈y∗, x〉 � β} and C2 ∩ {x : 〈y∗, x〉 > β} 
= ∅;
and if γ � β is close enough to supC2

y∗, then the set {x ∈ C2 : 〈y∗, x〉 > γ} has small diameter.
Thus, putting C = {x ∈ C2 : 〈y∗, x〉 � γ} for some suitable γ, we see that condition (2) is
satisfied. By Theorem 2.1, we conclude that player II has a winning strategy in the point–open
slice game for K.

Now, assume that K does not have the RNP. Then one can find ε > 0 and a non-empty set
K̃ ⊂ K such that each non-empty open slice of K̃ has diameter greater than 2ε. We define a
strategy for player I as follows. First, I chooses some point a0 ∈ K̃. If II answers with some
open slice A0 containing a0, then diamA0 ∩ K̃ > 2ε. By the triangle inequality, it follows that
one can find a1 ∈ A0 ∩ K̃ such that ‖a1 − a0‖ > ε; this point a1 is the second move of player
I. Repeating this procedure, we clearly get the announced strategy for player I.
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Keeping in mind that the point–open slice game is harder to win for II than the point–closed
game which is harder than the point–hyperplane game, and that the games in a larger set are
harder to win for II, we get the following corollary.

Corollary 3.2. If the Banach space X has the RNP, then, for any (non-empty)
bounded set Ω ⊂ X, player II has winning strategies in the point–slice games and in the
point–hyperplane game for Ω.

The remark following Theorem 2.1 shows that if the convex set K has the RNP, then, in
each of the above games, player II has a winning strategy given by a sequence of tactics: there
is a sequence of maps tn : E → A such that II wins by answering tn(an) when I has played
an. For the point–closed slice game, this result can be formulated in the following way, which
is arguably very intuitive keeping in mind the fact that every bounded monotonic sequence of
real numbers is convergent.

Corollary 3.3. If X has the Radon–Nikodym property, then there exists a sequence of
maps Φn : BX → SX∗ such that the following property holds true: if (an) ⊂ BX is a sequence
satisfying 〈Φn(an), an+1〉 � 〈Φn(an), an〉 for all n ∈ N, then (an) is convergent.

With a little more effort, one can show that, as far as the Radon–Nikodym property of the
whole space X is concerned, the two point–slice games and the point–hyperplane game are
essentially equivalent. This is the content of the next result.

Theorem 3.4. Let Ω be a bounded subset ofX with non-empty interior. Then the following
are equivalent:

(1) X has the Radon–Nikodym property;
(2) player II has a winning strategy in the point–open slice game for Ω;
(3) II has a winning strategy in the point–closed slice game for Ω;
(4) II has a winning strategy in the point–hyperplane game for Ω.

Proof. One can find open balls B1 and B2 such that B1 ⊂ Ω ⊂ B2. Since the games in a
larger set are harder to win for player II, it follows that II has a winning strategy in any of
the above games for Ω if and only if it has one in the same game for the open unit ball of X.
Thus, we may assume that Ω is the open unit ball of X.

That (1) implies (2) follows from Theorem 3.1: if X has the RNP, which means that Ω has
the RNP, then II has a winning strategy in the game G(Ω,So), and hence also in G(Ω,So).
We have already observed that (2) implies (3) and (3) implies (4). To conclude the proof, we
have to show that if X does not have the RNP, then player I also has a winning strategy in
the point–hyperplane game G(Ω,H). So, assume that X does not have the RNP.

Claim 1. One can find a non-empty open convex set V ⊂ Ω and ε > 0 such that all non-
empty slices of V have diameter at least ε.

Proof of Claim 1. Since X does not have the RNP, Ω contains a non-empty closed convex
set K such that all non-empty open slices of K have diameter at least 5ε, for some fixed
ε > 0. Moreover, we may assume that K is at positive distance from ∂Ω, that is, η0 :=
inf{dist(x, ∂Ω): x ∈ K} > 0. Then, for η < η0, the convex open set Vη = {x : dist(x,K) < η}
is contained in Ω. Let us check that one can take V = Vη, if η is small enough. Since Vη is open,
it is enough to consider only open slices of Vη. Let S be a non-empty open slice of Vη, that is
S = U ∩ Vη, where U is an open half-space. Let x be any point of S. Then one can find x′ ∈ K
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such that ‖x′ − x‖ < η. By translating the half-space U in the direction of x′ − x, one gets
an open half-space U ′ containing x′ such that dist(z, U) < η for all z ∈ U ′. Then S′ = U ′ ∩K
is a non-empty open slice of K, so it has diameter at least 5ε. By the triangle inequality, it
follows that one can find y′ ∈ U ′ ∩K such that ‖y′ − x′‖ � 2ε, and by the choice of U ′, one
gets a point y ∈ U such that ‖y − y′‖ < η. Then y ∈ Vη because y′ ∈ K, so that y ∈ S; and
‖y − x‖ � ‖y′ − x′‖ − 2η � 2ε− 2η. Thus, if η < ε/2, then the diameter of every non-empty
slice of Vη is at least ε.

Claim 2. Each non-empty hyperplane section of V has diameter at least ε/4.

Proof of Claim 2. Let Φ ∈ X∗, and put mΦ := infV Φ and MΦ := supV Φ. We have to show
that for each r ∈ (mΦ,MΦ), the set Ar = {x ∈ V : Φ(x) = r} has diameter at least ε/4. Let x0

be any point of V , and assume r > Φ(x0). Let us denote by Sr the slice {x ∈ V : Φ(x) > r}.
For each point z ∈ Sr, the line segment [x0, z] intersects Ar at a unique point z̃, and we have
‖z − z̃‖ = λz‖z − x0‖, where

λz =
Φ(z) − Φ(z̃)
Φ(z) − Φ(x0)

� MΦ − r

r − Φ(x0)
.

It follows that Sr ⊂ Ar +B(0, εr), where εr → 0 as r →MΦ. Since diam(Sr) � ε, we
have shown that if r is close to MΦ, then diam(Ar) � ε/2; and likewise if r is close to mΦ.
Now, for an arbitrary r ∈ (mΦ,MΦ), one can find r1 < r < r2 such that Ar1 and Ar2 have
diameter at least ε/2. Moreover, we have diam(Ar) � 1

2 min(diam(Ar1),diam(Ar2)), and hence
diam(Ar) � ε/4. Indeed, assume (as we may) that r − r1 � 1

2 (r2 − r1). If x1 and y1 are any
two points of Ar1 , then, taking a point z ∈ Ar2 and drawing the triangle x1y1z, we see that
one can find x, y ∈ Ar such that ‖x− y‖ � 1

2‖x1 − y1‖. Since x1 and y1 are arbitrary, this gives
diam(Ar) � 1

2 diam(Ar1).

Exactly as in the proof of Theorem 3.1, it follows from Claim 2 that player I has an obvious
winning strategy in the game G(V,H): begin with any point a0 ∈ V , and then, thanks to
Claim 2, play at each step a point an+1 ∈ V such that ‖an+1 − an‖ � ε/8. Since the game
G(V,H) is more difficult to win for I than the corresponding game in the larger set Ω, this
concludes the proof.

3.2. The super-reflexive case

We observed above that if X has the RNP, then, in each of the three games we have
considered, player II has a winning strategy which is given by a sequence of tactics. It is
not clear for us whether II has in fact a single winning tactic. However, we can do more under
a stronger assumption on X. Recall that the Banach space X is said to be super-reflexive
if every Banach space which is finitely representable in X is reflexive. By a deep result due
to P. Enflo, the super-reflexive Banach spaces are exactly those which admit an equivalent
uniformly convex norm.

Theorem 3.5. Assume that the Banach space X is super-reflexive. Then, for any bounded
set Ω ⊂ X, player II has a winning tactic in the point–closed slice game for Ω.

As in Corollary 3.3 above, this result can be formulated in the following way.

Corollary 3.6. If X is super-reflexive, then one can associate to each point a ∈ BX a
linear functional Φa ∈ SX∗ in such a way that the following property holds true: if a sequence
(an) ⊂ BX satisfies 〈Φan

, an+1〉 � 〈Φan
, an〉 for all n ∈ N, then (an) is convergent.
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For the proof of Theorem 3.5, we need the following definition.

Definition 1. Let K ⊂ X be a bounded closed convex set with non-empty interior. We
say that K is uniformly convex if the following property holds: there exists a function

δ : (0,∞) → (0,∞)

such that whenever x, y ∈ K satisfy ‖x− y‖ � ε, it follows that dist
(

1
2 (x+ y), ∂K

)
� δ(ε). In

such a case, we say that K is uniformly convex with modulus δ.

Thus, the balls of X are uniformly convex if and only if the given norm is uniformly convex
in the usual sense, and in that case, a ball of radius r is uniformly convex with a modulus
depending only on r.

Proof of Theorem 3.5. Since X is super-reflexive, we may assume that the norm of X is
uniformly convex. For each r > 0, we choose a modulus of uniform convexity δr for balls of
radius r. Clearly, we may assume that if r � r′, then δr(ε) � δr′

(ε) for small enough ε .

Fact 1. Let (Ki)i∈I ⊂ X be a family of closed convex bounded sets. Assume that
⋂

iKi

has non-empty interior, and that all sets Ki are uniformly convex with some fixed modulus δ.
Then K =

⋂
i∈I Ki is uniformly convex with modulus δ.

Proof. First, we observe that if K1 and K2 are uniformly convex subsets of X with modulus
δ1 and δ2, respectively, and if K1 ∩K2 has non-empty interior, then K1 ∩K2 is uniformly
convex with modulus δ3 � inf(δ1, δ2). This is obvious since ∂(K1 ∩K2) ⊂ ∂K1 ∪ ∂K2.
Accordingly, we may assume that the family (Ki) is stable under finite intersections, and
of course that Ki 
= Kj if i 
= j. Replacing each Ki by Ki ∩Ki0 for some fixed i0 ∈ I, we may
assume in addition that

⋃
iKi is bounded. Finally, we may also assume that 0 ∈ int(K).

Let us fix ε > 0, and x, y ∈ K with ‖x− y‖ � ε. Let p ∈ ∂K. Since
⋃

iKi is bounded, one
can find λ ∈ (1,∞) such that, for each i ∈ I, the segment [p, λp] intersects ∂Ki at some point
pi. We order the index set I in the obvious way: i � j if Ki ⊃ Kj . Then I is a directed set,
and since [p;λp] is compact, the net (pi)i∈I has a subnet converging to some p̃ ∈ [p, λp] ∩K.
Since 0 ∈ int(K), the half-open segment [0, p̃) is contained in int(K), and this implies that
p̃ = p. Moreover, we have

∥∥ 1
2 (x+ y) − pi

∥∥ � δ(ε) for all i ∈ I; hence
∥∥ 1

2 (x+ y) − p
∥∥ � δ(ε).

This concludes the proof.

Fact 2. Let R > 0, and let K1 and K2 be non-empty closed convex sets of diameter less
than R such that K1 ⊂ K2 and K2 \K1 
= ∅. Assume that K2 is uniformly convex, and that
K1 is the intersection of a family of balls of radii less than R. For each ε > 0, there exists a
ball B of radius less than 4R such that K = B ∩K2 satisfies K1 ⊂ K ⊂ K2, K2 \K 
= ∅ and
diam(K2 \K) < ε.

Proof. Choose a point x0 ∈ K2 \K1. By assumption on K1, one can find an open ball
B0 = B(p0, r0) with r0 < R such that K1 ⊂ B0 and x0 
∈ B0. Since X is reflexive, the set K2

is weakly compact. By a classical result of K. S. Lau [6], the set of points p ∈ X admitting
a farthest point in K2 is dense in X. Thus, one can find a point p ∈ X very close to p0 and
x ∈ ∂K2 such that ‖x− p‖ � ‖y − p‖ for all y ∈ K2. Notice that if p is close enough to p0, then
‖x− p‖ � ‖x0 − p‖ > sup{‖z − p‖ : z ∈ K1}, so that x 
∈ K1. Notice also that if p is close to
p0, then ‖x− p‖ < 2R. Now, let η > 0 and α > 0. By the choice of p and x, if a point z ∈ K2

satisfies

‖z − p‖ > rη :=
1

1 + η
‖x− p‖,
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then p+ (1 + η)(z − p) 
∈ K2; in particular, the half-line z + R
+(z − p) must meet ∂K2 at some

point z + t(z − p) with t � η, so

dist(z, ∂K2) � η‖z − p‖ � 2Rη.

Thus, for each η > 0, we have found rη < 2R such that if z ∈ K2 satisfies ‖z − p‖ > rη,
then dist(z, ∂K2) � 2Rη. Denoting by δ a modulus of uniform convexity for K2, we see that
‖x− y‖ < α whenever 2Rη < δ(α) and y ∈ K2 satisfies

∥∥1
2 (x+ y) − p

∥∥ > rη. In other words,
for small enough η, the set K2 \B(2p− x, 2rη) is contained in B(x, α). Thus, one can put
B = B(2p− x, 2rη), for some suitably chosen η > 0.

Fact 3. Let (Kn) be a non-decreasing sequence of uniformly convex subsets of X. Assume
that the sequence (Kn+1 \Kn) accumulates to some point x ∈ X \ ⋃

nKn. Then one can find
a closed half-space containing x as a boundary point and disjoint from

⋃
nKn.

Proof. Put K =
⋃

nKn. Since the sequence (Kn) is non-decreasing, the set K is convex,
and K has non-empty interior. If x 
∈ K (which may happen in the uninteresting case where
the sequence (Kn) is stationary), the Hahn–Banach theorem allows us to separate strictly x
from K by some linear functional, and the result follows. Now, assume x ∈ K. Then we have
K = K ∪ {x} because the sequence (Kn+1 \Kn) accumulates to x. Since K has non-empty
interior, one can still separate x from K by some linear functional, but perhaps not strictly. In
other words, one can find a non-zero linear functional x∗ ∈ X∗ such that α := 〈x∗, x〉 � 〈x∗, z〉
for all z ∈ K. By contradiction, assume that equality occurs at some point z ∈ K. Then the
segment [z, x] is contained in K = K ∪ {x}, so that the half-open segment [z, x) is contained
in K. Since the sequence (Kn) is non-decreasing and the sets Kn are convex, it follows that
one can find some integer n such that I :=

[
z, 1

2 (x+ z)
] ⊂ Kn; hence I ⊂ ∂Kn because I is

contained in the hyperplane {x∗ = α}. This is a contradiction since, being uniformly convex,
Kn cannot contain non-trivial segments in its boundary. Thus, the half-space M := {x∗ � α}
satisfies M ∩K = ∅, as required.

We are now in position to apply Theorem 2.3. Let Ω be a bounded subset of X, and choose
R > 0 such that Ω ⊂ B(0, R/3). We apply Theorem 2.3 with E = B(0, R/3); as observed above,
it is enough to show that player II has a winning tactic in the point–closed slice game for E. We
put a = 0, and for each n ∈ N, we define Cn to be the family of all uniformly convex sets C ⊂ E
which are intersections of balls of X of radii less than 4nR. Then condition (0) in Theorem 2.3
is clearly satisfied. Conditions (1), (2) and (3) are also satisfied, thanks to the corresponding
facts proved above. This concludes the proof of Theorem 3.5.

3.3. The point of continuity property

We conclude this section with a game characterization of another well-known Banach space
property. Recall that the Banach space X is said to have the point of continuity property
(PCP) if each non-empty bounded set A ⊂ X has non-empty relatively weakly open subsets
with arbitrarily small diameter. More generally, let (E, d) be a metric space, and let τ be a
topology on E. The topological space (E, τ) is said to be fragmented by the metric d if each
non-empty subset of E has non-empty relative τ -open subsets with arbitrarily small diameter.
Thus, a Banach space X has the PCP if and only if its unit ball is norm-fragmented in the
weak topology.

If (E, d) is a metric space and τ is a topology on E, we define the (τ, d)-game for E to be the
game G(E,A), where for each x ∈ E, A(x) is the family of all τ -open subsets of E containing
x. Thus, player I starts the game by playing some point a0, player II answers by some τ -open
set U0 containing a0, player I then plays a point a1 ∈ U0 and so on.
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Theorem 3.7. The topological space (E, τ) is fragmented by the metric d if and only if
player II has a winning strategy in the (τ, d)-game for E.

Proof. The ‘only if’ part follows from Theorem 2.1: just take for C the family of all τ -closed
subsets of E. The only thing to be checked is property (2). Now, if C1 and C2 are τ -closed
with C1 ⊂ C2 and C2 \ C1 
= ∅, then one can find a τ -open set U such that U ∩ (C2 \ C1) 
= ∅
and diam(U ∩ (C1 \ C1)) < ε. Thus, one can put C = C1 ∪ (C2 \ U) to get (2). The ‘if’ part is
obvious, exactly as in Theorem 3.1.

Corollary 3.8. A Banach space X has the PCP if and only if player II has a winning
strategy in the (w, ‖ · ‖)-game for BX .

Remark 2. In [7], P. S. Kenderov and W. B. Moors give a characterization of fragment-
ability by means of another natural topological game. See also [8].

Using the same kind of arguments as in the proof of Theorem 3.4 above, we can also get
a characterization of the point of continuity property by means of a game where the weak
topology does not appear explicitly. Let us denote by Acof the family of all finite-codimensional
affine subspaces of X.

Theorem 3.9. Let Ω be a bounded subset of X with non-empty interior. The following
are equivalent:

(1) the Banach space X has the PCP;
(2) player II has a winning strategy in the game G(Ω,Acof).

Proof. As in the proof of Theorem 3.4, we may assume that Ω is the open unit ball BX .
From Corollary 3.8, we already know that (1) implies (2). Conversely, assume that X does not
have the PCP. We show that player I has a winning strategy in the game G(BX ,Acof).

Claim. There exist ε > 0 and an increasing sequence of open sets (Vn), with Vn ⊂ BX for
all n, such that the following property holds true: for each n ∈ N and all finite-codimensional
affine subspaces M ⊂ X such that M ∩ Vn 
= ∅, the diameter of M ∩ Vn+1 is at least ε.

Proof of the claim. Since X does not have the PCP, one can find a non-empty set K ⊂ 1
2BX

such that each non-empty relative weak open subset of K has diameter at least 9ε, for some
fixed ε > 0. As in the proof of Theorem 3.4, we find that for all sufficiently small η > 0, the
open set

Vη = {x : dist(x,K) < η}
has the same property, with 9ε replaced by 3ε. Putting Vn = Vηn

, for some suitable increasing
sequence (ηn), we get an increasing sequence of open sets Vn ⊂ BX such that:

(a) all non-empty relative weak open subsets of Vn have diameter at least 3ε;
(b) inf{dist(x, ∂Vn+1) : x ∈ Vn} > 0 for all n ∈ N.
Let us fix n ∈ N, and let M be a finite-codimensional affine subspace of X such that

M ∩ Vn 
= ∅. We write M =
⋂N

i=1Hi, where Hi = {Φi = ri} is an affine hyperplane determined
by some linear functional Φi ∈ X∗. Then ρ(x) = sup1�i�n |Φi(x)| induces a norm on the
quotient space X/M, where M =

⋂
i Ker(Φi); and since X/M is finite dimensional, this norm

is equivalent to the one induced by ρ0(x) = dist(x,M). Thus, we see that one can find some
constant C = C(Φ1, . . . ,ΦN ) such that the following property holds true:

for all x ∈ X, dist(x,M) � C sup
1�i�N

|Φi(x) − ri|. (3.1)
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By the choice of Vn, for each η > 0, the set

Aη :=
{
x ∈ Vn : sup

1�i�N
|Φi(x) − ri| < η

}

has diameter at least 3ε. So one can find y1, y2 ∈ Aη such that ‖y1 − y2‖ � 2ε, and by (3.1) one
can find x1, x2 ∈M such that ‖xj − yj‖ � Cη, for j = 1, 2. Then ‖x1 − x2‖ � ε if η is small
enough. Moreover, since y1 and y2 are in Vn, they are ‘far away’ from ∂Vn+1, so that we also
have x1, x2 ∈ Vn+1 if η is small enough. Thus we have proved that diam(Vn+1 ∩M) � ε.

Now, we define a winning strategy for I in the game G(BX ,A) as follows. The first
move of player I is any point a0 ∈ V0. When II has played a finite-codimensional section
A0 = M0 ∩BX containing a0, then, by the claim, I can play a point a1 ∈M0 ∩ V1 such that
‖a1 − a0‖ � ε/2. Then II plays A1 = M1 ∩BX containing a1, I can play a2 ∈M1 ∩ V2 such
that ‖a2 − a1‖ � ε/2, and so on.

Remark 3. When the Banach space X is separable and reflexive, it is very easy to describe
a winning strategy for II in the game G(BX ,Acof), without appealing to Theorem 2.1. Since
X is separable, we may assume that the norm of X has the Kadec–Klee property, which means
that the weak and the norm topologies coincide on the unit sphere. Moreover, X∗ is separable
since (X∗)∗ = X is; let {x∗n : n ∈ N} be a countable dense subset of X∗. The strategy of player
II is defined as follows. Once player I has played a point an ∈ BX , player II chooses a linear
functional Φn ∈ BX∗ such that Φn(an) = ‖an‖, and then she plays the affine subspace

Mn := {x ∈ X : Φi(x) = Φi(an) and 〈x∗i , x〉 = 〈x∗i , an〉, i = 0, . . . , n} .
If II plays according to this strategy, then, since X is reflexive, the sequence (an) produced by
any run of the game is weakly convergent. Moreover, denoting by a the weak limit of (an), we
have ‖a‖ � Φn(a) = Φn(an) = ‖an‖ for all n ∈ N; and since in any case ‖a‖ � lim inf ‖an‖, we
conclude that ‖a‖ = lim ‖an‖. By the Kadec–Klee property, it follows that the sequence (an)
is in fact ‖ · ‖-convergent, so that II has won the game. We thank G. Lancien for showing this
strategy to us.

3.4. Concluding remarks

To conclude this section, let us mention some problems that we were not able to solve.
(1) Does player II always have a winning tactic in the point–closed slice game for BX if the

Banach space X has the RNP? If not, what about the reflexive case?
(2) In the super-reflexive case, does player II have a continuous tactic in the point–closed

slice game? M. Zelený has shown very recently [12] that this is indeed the case when X = R
d.

(3) Does player II have a winning tactic in the game G(BX ,Acof) when the Banach space
X has the PCP? If not, is there a natural class of Banach spaces for which player II does have
a winning tactic? A plausible candidate might be the class of asymptotically uniformly convex
spaces (see [5]).

(4) What can be said about other games of the type G(BX ,A) where A is a given family of
affine subspaces of X? In particular, let A∞ be the family of all infinite-dimensional subspaces
of X. Does the game G(BX ,A∞) characterize some known Banach space property? It follows
from Corollary 3.8 that player II has a winning strategy in G(BX ,A∞) if X has an infinite-
dimensional subspace with the PCP. Indeed, if Y is such a subspace, then, for any point a0 ∈ X,
the subspace Y (a0) := Y ⊕ Ra0 also has the PCP, so that II can win the game by playing inside
Y (a0). We are not able to say more.

Of course, one could ask the same question as in (4) for the family of all finite-dimensional
subspaces of X, but in that case the answer is easy. Actually, as soon as the family A contains
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all d-dimensional subspaces of X, for some non-negative integer d < dim(X), then II has a
winning strategy in G(BX ,A). Indeed, once player I has played a0, player II can answer
with any d-dimensional subspace F0 = F (a0). Then I plays a1, and II can answer with a
d-dimensional subspace F1 = F (a0, a1) such that the affine subspace F generated by F0 and
F1 has dimension d+ 1. Then the next move a2 of player I will belong to F , so that from this
point on, II can play according to some winning tactic in the point–hyperplane game inside F .

4. Back to differentiable functions

In this section, we turn back to pathological differentiable functions. We fix once and for all
an integer d � 2 and an arbitrary norm ‖ · ‖ on R

d.
Let us recall that Buczolich has constructed an everywhere differentiable function u : R

d → R

such that ∇u(0) = 0 and ‖∇u(x)‖ � 1 for almost every x ∈ R
d, in the sense of Lebesgue

measure. Following the ideas of [9], our purpose here is to use the games introduced above
to obtain a bounded differentiable function u : R

d → R which is a solution of the Eikonal
equation ‖∇u‖ = 1 almost everywhere.

Of course, this equation admits unbounded smooth solutions (for example, any norm 1 linear
functional), as well as bounded almost everywhere solutions. The pathology comes from the
fact that the almost everywhere solution u is both bounded and everywhere differentiable.
Notice that, using Ekeland’s variational principle, it is easy to check that the gradient of any
bounded differentiable function on R

d takes arbitrarily small values. This shows, in particular,
that the Eikonal equation does not have bounded differentiable solutions on R

d, and that the
gradient of any bounded, differentiable, almost everywhere solution fails the Denjoy–Clarkson
property.

Theorem 4.1. There exists an everywhere differentiable, bounded function u : R
d → R

such that ∇u(0) = 0 and ‖∇u(x)‖ = 1 for almost every x ∈ R
d.

We shall actually prove the following more general result. Here and below, all cubes of R
d

will be half-open, that is, of the form
∏d

i=1[ai, bi), where the [ai, bi) are half-open intervals
of R.

Theorem 4.2. Let U be a bounded open subset of R
d containing 0, and let Q0 = [0, 1)d

be the unit cube in R
d. Then, there exists an everywhere differentiable, Z

d-periodic function
u : R

d → R such that:

(1) u and ∇u vanish on ∂Q0;
(2) ∇u(x) ∈ U for all x ∈ R

d;
(3) ∇u(x) ∈ ∂U for almost every x ∈ R

d.

Up to a constant, the function u in Theorem 4.2 will be the sum of a uniformly convergent
series of non-zero C∞-smooth functions un : R

d → R. In order to prove that
∑∞

1 un is
everywhere differentiable, we shall use the following differentiability criterion. Here and below,
if F is a function between two Banach spaces X and Y and if ε is a positive number, we put

osc(F, ε) = sup{‖F (x) − F (y)‖ : ‖x− y‖ < ε}.

Lemma 4.3. Let (un)n�1 be a sequence of C1-functions between two Banach spaces X and
Y . Assume that:

(a) the series
∑
u′n(x) is pointwise convergent;

(b)
(
u′n

)
converges uniformly to 0;

(c) ‖un+1‖∞ = o(‖un‖∞);
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(d) limn→∞ osc (
∑n

k=1 u
′
k, ‖un+1‖∞) = 0.

Then the series
∑
un is uniformly convergent, the function f :=

∑∞
1 un is everywhere

differentiable, and f ′(x) =
∑∞

1 u′n(x) for all x ∈ X.

Proof. By condition (c), one can find n0 such that ‖un+1‖∞ � ‖un‖∞/2 for all n � n0;
therefore, the series

∑
un is uniformly convergent. If un = 0 for some n � n0, then uk = 0

for all k � n and there is nothing to prove. So we assume that ‖un‖∞ > 0 for all n. Let us
fix x0 ∈ X.

Putting

Sn(x) =
n∑

k=1

uk(x), sn(x) = S′
n(x) =

n∑
k=1

u′k(x), rn(x) =
∞∑

k=n+1

uk(x),

we have ∥∥∥∥∥f(x) − f(x0) −
∞∑

k=1

u′k(x0) · (x− x0)

∥∥∥∥∥
� ‖Sn−1(x) − Sn−1(x0) − sn−1(x0) · (x− x0)‖

+ ‖un(x) − un(x0) − u′n(x0) · (x− x0)‖
+ ‖un+1(x) − un+1(x0) − u′n+1(x0) · (x− x0)‖

+ ‖rn+1(x)‖ + ‖rn+1(x0)‖ +

∥∥∥∥∥
∞∑

k=n+2

u′n(x0)

∥∥∥∥∥ × ‖x− x0‖

for all x ∈ X and all n � 2.
By the mean value theorem, the first three terms in the right side can be estimated as follows:

‖Sn−1(x) − Sn−1(x0) − sn−1(x0) · (x− x0)‖ � osc (sn−1, ‖x− x0‖) × ‖x− x0‖;
‖un(x) − un(x0) − u′n(x0) · (x− x0)‖ � 2‖u′n‖∞ × ‖x− x0‖;

‖un+1(x) − un+1(x0) − u′n+1(x0) · (x− x0)‖ � 2‖u′n+1‖∞ × ‖x− x0‖.
Since ‖rn+1‖∞ �

∑∞
k=n+2 ‖uk‖∞, it follows from condition (c) that

‖rn+1‖∞ = o
(‖un+1‖∞

)
as n→ ∞.

Finally, by condition (a), ∥∥∥∥∥
∞∑

k=n+2

u′k(x0)

∥∥∥∥∥ → 0 as n→ ∞.

These estimates are valid for all x ∈ X and all n � 2. Now, if ‖x− x0‖ is small enough,
there is a uniquely defined integer n = n(x) � n0 such that ‖un+1‖∞ � ‖x− x0‖ � ‖un‖∞,
and clearly n(x) → ∞ as x→ x0. Using the above estimates and conditions (b) and (d), we
see that ∥∥∥∥∥f(x) − f(x0) −

∞∑
k=1

u′k(x0) · (x− x0)

∥∥∥∥∥ = o(‖x− x0‖)

as x→ x0. In other words, f is differentiable at x0, with f ′(x0) =
∑∞

1 u′k(x0). This concludes
the proof.

Each function un : R
d → R will be constructed on small cubes, and will have the property

that the image of each such cube by the gradient mapping ∇un is essentially equal to a
segment. Precisely what is needed is stated in the next lemma. Here and afterwards, we denote
by λd the usual Lebesgue measure on R

d. A function defined on a cube Q will be said to be
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piecewise constant on Q if Q can be partitioned into finitely many cubes on which the function
is constant.

Lemma 4.4. Let a be a non-zero vector in R
d, let Q be a cube in R

d, and let ε > 0. Then,
there exists a bounded, C∞-smooth function u : R

d → R satisfying the following properties:
(a) u vanishes in a neighbourhood of ∂Q and ‖u‖∞ < ε;
(b) λd

({x ∈ Q : ∇u(x) = −a or ∇u(x) = a}) � (1 − ε)λd(Q);
(c) one can write ∇u = v + w with ‖w‖∞ < ε, the set {v(x) : x ∈ Q} is included in the

segment [−a, a], and the function v is piecewise constant on Q.

Proof. By translation and dilation, we may assume thatQ is the unit cube [0, 1)d. Letm be a
positive number to be chosen later. Let ϕ : R → R be a C∞-smooth 1-periodic function such that
‖ϕ′‖∞ � 1 and λ1

({t ∈ [0, 1) : |ϕ′(t)| = 1}) � 1 − α(ε), where α(ε) > 0 will be specified later.
Finally, let ψ : R

d → [0, 1] be a C∞-smooth ‘cut-off’ function vanishing on some neighbourhood
of R

d \ int(Q) and such that

λd

({x ∈ Q : ψ(x) = 1}) � (1 − ε/2)λd(Q). (4.1)

We define the function u on Q by setting

u(x) =
ϕ(m〈x, a〉)ψ(x)

m
,

where 〈 , 〉 is the usual scalar product on R
d. Since ψ vanishes in a neighbourhood of ∂Q, one

can extend u to a Z
d-periodic, C∞-smooth function on R

d, still denoted by u.
If m is large enough, then condition (a) is satisfied.
To check condition (b), observe that we have

λd

({x ∈ Q : |ϕ′(m〈x, a〉)| = 1}) � (1 − ε/2)λd(Q)

provided α(ε) is small enough. Together with (4.1), this implies that

λd

({x ∈ Q : ψ(x) = 1 and |ϕ′(m〈x, a〉)| = 1}) � (1 − ε)λd(Q).

Computing the derivative of u and noting that ∇ψ(x) = 0 when ψ(x) has the maximal value
1, we see that (b) is satisfied.

We now turn to condition (c). If we set

v1(x) := ϕ′(m〈x, a〉)ψ(x)a and w1(x) := ϕ(m〈x, a〉)∇ψ(x)/m,

we see that ∇u = v1 + w1 and that the set {v1(x) : x ∈ R
d} is contained in [−a, a]. Moreover,

we have ‖w1‖∞ < ε/2 provided m is large enough. We now fix m large enough and α(ε) small
enough, and we choose a positive integer p such that osc(v1, 1/p) < ε/2. We define the mapping
v : Q→ R

d as follows: for each g ∈ p−1
Z

d ∩Q and all x ∈ g + p−1Q, we put v(x) = v1(g).
Then v has values in the segment [−a, a] and is piecewise constant on Q. Finally, we set
w = w1 + v1 − v. We have ∇u = v + w and ‖w‖∞ � ‖w1‖∞ + ‖v1 − v‖∞ < ε. This concludes
the proof of the lemma.

According to condition (a) in Lemma 4.3, the sequence of functions un : R
d → R should be

constructed in such a way that for all x ∈ R
d, the series

∑
u′n(x) is convergent. This will be

guaranteed by the next lemma applied to sn(x) =
∑n

k=1 ∇uk(x). Here and below, we denote
by 〈 , 〉 the usual scalar product on R

d.

Lemma 4.5. Let U be a bounded open subset of R
d, and let B be a closed ball containing

U . Then, there exists a map t : B → R
d such that the following property holds true: if (sn)

is a sequence in U and if there exists a sequence (σn) ∈ B such that sn − σn converges and
〈t(σn), σn+1 − σn〉 � 0 for all n, then (sn) converges to some point s ∈ U .
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Proof. Since R
d is super-reflexive (!), player II has a winning tactic in the point–closed slice

game for B. Identifying R
d with (Rd)∗, we put t(a) = Φa, where the map a �→ Φa is given by

Corollary 3.6. By the definition of t, each sequence (σn) ⊂ B such that 〈t(σn), σn+1 − σn〉 � 0
for all n is convergent. If sn − σn converges, it follows that the sequence (sn) converges to some
point s ∈ R

d, and of course we have s ∈ U if sn ∈ U for all n.

The next lemma follows from the fact that almost sure convergence implies convergence in
probability.

Lemma 4.6. Let (sn) be an almost everywhere convergent sequence of mappings from a
probability space (Ω,A,P) into a Banach spaceX, and let ε > 0. Then P

(‖sn+1 − sn‖� ε
) → 0.

After these preliminary lemmas, we are now ready to begin the proof of Theorem 4.2, but
first, we introduce some terminology.

We shall consider cube partitions of R
d, that is, partitions of R

d into half-open cubes. By a
Z

d-periodic cube partition of R
d, we mean a cube partition consisting of Z

d-translates of some
finite cube partition of the unit cube Q0 = [0, 1)d. We say that a partition Q′ is a refinement
of a partition Q if each cube Q ∈ Q can be decomposed into finitely many cubes Q′ ∈ Q′.

Proof of Theorem 4.2. The unit cube Q0 = [0, 1)d and the bounded open set U ⊂ R
d are

given. For the proof, we fix once and for all a decreasing sequence of real numbers (εk) such
that 0 < εk < 1 and limk→∞ εk = 0. Finally, for each ε > 0, we put

∂Uε = {x ∈ U : dist(x, ∂U) < ε}.
Up to a constant, the function u will be the sum of a uniformly convergent series

∑
un of non-

zero, real-valued, Z
d-periodic, C∞-smooth functions defined on R

d. We put sn :=
∑n

k=1 ∇uk.
Each function ∇un will be of the form vn + wn, and we put σn :=

∑n
k=1 vk. Together with

the sequence (un), we will construct a sequence (Qn), where each Qn is a Z
d-periodic cube

partition of R
d and Qn+1 is a refinement of Qn. Finally, we will also define an increasing

sequence of integers (Nk). The following conditions have to be fulfilled:
(o) N0 = 0, u0 is constant, v0 = 0 = w0, the partition Q0 is the family of all Z

d-translates
of Q0 = [0, 1)d, and for each n � 1, the function un is constant on a neighbourhood
of ∂Q0;

(i) vn is constant on each cube Q ∈ Qn;
(ii) ‖wn‖∞ � 2−n;
(iii) sn(x) ∈ U for all x ∈ R

d;
(iv) ‖σn(x)‖ � R+ 1 for all x ∈ R

d, where R = sup{‖s‖ : s ∈ U};
(v) 〈t (σn(x)) , σn+1(x) − σn(x)〉 = 0 for all x ∈ R

d, where t is is the mapping given by
Lemma 4.5 with B = {x ∈ R

d : ‖x‖ � R+ 1};
(vi) ‖un+1‖∞ � 2−n‖un‖∞ for all n, and if Nk−1 < n � Nk, then ‖vn‖∞ � εk/4 and

osc(sn, ‖un+1‖∞) < εk/4;
(vii) for each k � 1, we have

λd

({
x ∈ [0, 1)d : sNk

(x) /∈ ∂Uεk

})
� 2−k.

Inductive step. Let us fix k � 1. Assume Nk−1 has been defined, and that un has been
constructed for some n � Nk−1. By (i), the function σn is constant on each cube Q ∈ Qn;
we denote by σn(Q) the value taken by σn on such a cube Q, and we choose some vector
a = a(Q) ∈ R

d such that ‖a‖ = εk/4 and 〈t(σn(Q)), a〉 = 0; this can be done because d � 2.
Finally, we choose a Z

d-periodic cube partition Q̃n of R
d refining Qn, such that the oscillation

of sn on each cube Q̃ ∈ Q̃n is less than εk/4. Recall that un 
= 0. Applying Lemma 4.4 to all



INFINITE GAMES AND BANACH SPACE GEOMETRY Page 17 of 20

cubes Q̃ ∈ Q̃n, we see that one can construct a Z
d-periodic, C∞-smooth function ũ : R

d → R

and a Z
d-periodic cube partition Qn+1 refining Q̃n (hence a refinement of Qn), such that

(a) ‖ũ‖∞ < 2−n‖un‖∞ and osc(sn, ‖ũ‖∞) < εk/4;
(b) λd({x ∈ Q : ∇ũ(x) = ±a}) � (1 − 2−k)λd(Q) for each cube Q ∈ Qn;
(c) one can write ∇ũ = ṽ + w̃, where ‖w̃‖ � εk/2n+2, the function ṽ is constant on each

cube of the partition Qn+1, and ṽ
(
Q̃

) ⊂ [−a(Q); a(Q)] for each cube Q̃ ∈ Q̃n, where Q
is the unique cube of the partition Qn containing Q̃;

(d) the function ũ vanishes on a neighbourhood of ∂Q̃, for each cube Q̃ ∈ Q̃n.
Notice that ũ 
= 0. Let c ∈ R

d be a non-zero vector such that ‖c‖ < ‖ũ‖∞ and ‖ũ‖∞ + ‖c‖ �
2−n‖un‖∞.

Now, we define the function un+1 on each cube Q̃ ∈ Q̃n. Let us choose a point gQ̃ ∈ Q̃ for
each such cube Q̃, assuming (as we may) that this choice is compatible with the Z

d-periodicity
of Q̃n.

If sn(gQ̃) ∈ ∂U3εk/4, we set un+1 = c on Q̃, and vn+1 = 0 = wn+1.
If sn(gQ̃) /∈ ∂U3εk/4, we set un+1 = ũ+ c on Q̃; and accordingly, vn+1 = ṽ and wn+1 = w̃ on

Q̃. In this case, we have

λd

({x ∈ Q̃ : ‖∇un+1(x)‖ = εk/4}
)

� (1 − 2−k)λd(Q̃). (4.2)

The function un+1 is Z
d-periodic, and it is C∞-smooth because the auxiliary function ũ

is smooth and vanishes on a neighbourhood of ∂Q̃, for each cube Q̃ ∈ Q̃n. Notice also that
un+1 
= 0: this is clear if sn(gQ̃) ∈ ∂U3εk/4 for at least one cube Q̃, and otherwise it is also clear
because ‖c‖∞ < ‖ũ‖∞.

Conditions (o), (i) and (ii) for n+ 1 are clearly satisfied, as well as (vi) (though the integer
Nk is not yet defined). Condition (iv) for n+ 1 will follow from (iii) and the inequality

‖sn+1 − σn+1‖ �
n+1∑
k=1

‖wk(x)‖ � 1.

Let us check condition (iii) for n+ 1. Let x ∈ R
d, and choose Q̃ ∈ Q̃n such that x ∈ Q̃. If

sn(gQ̃) ∈ ∂U3εk/4, then sn+1(x) = sn(x) ∈ U by the induction hypothesis. If sn(gQ̃) 
∈ ∂U3εk/4,
then, since the oscillation of sn on Q̃ is less than εk/4, we have

dist(sn(x), ∂U) � 3εk/4 − ‖sn(x) − sn(gQ̃)‖ � εk/2,

and so sn(x) /∈ ∂Uεk/2. Observing that

sn+1(x) = sn(x) + ∇un+1(x)

and

‖∇un+1(x)‖ � ‖vn+1(x)‖ + ‖wn+1(x)‖ < εk/2,

we conclude that sn+1(x) ∈ U .
Let us prove (v). If Q ∈ Qn and x ∈ Q, then vn+1(x) is proportional to a(Q), and hence

orthogonal to t
(
σn(Q)

)
. Since vn+1(x) = σn+1(x) − σn(x) and σn(Q) = σn(x), this gives (v).

Now, we show that if we continue this construction, then we will find Nk > Nk−1 satisfying
(vii). Assume by contradiction that for all n > Nk−1,

λd

({x ∈ [0, 1)d : sn(x) /∈ ∂Uεk
}) > 2−k. (4.3)

If Q̃ ∈ Q̃n is a cube that meets {x ∈ [0, 1)d : sn(x) /∈ ∂Uεk
}, then sn(gQ̃) /∈ ∂U3εk/4 because the

oscillation of sn on Q̃ is less than εk/4. By (4.2), it follows that for every such cube Q̃, we have

λd

({y ∈ Q̃ : ‖sn+1(y) − sn(y)‖ � εk/4}
)

� (1 − 2−k)λd(Q̃).
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On the other hand, condition (4.3) implies that the proportion of cubes Q̃ ∈ Q̃n that meet
{x ∈ [0, 1)d : sn(x) /∈ ∂Uεk

} is at least 2−k. Therefore,

λd

({y ∈ [0, 1)d : ‖sn+1(y) − sn(y)‖ � εk/4}
)

� (1 − 2−k) × 2−k. (4.4)

This will contradict Lemma 4.6 if we can prove that the sequence (sn) is pointwise convergent.
Now, it follows from (ii) that sn(x) − σn(x) =

∑n
k=1 wk(x) converges at each point x ∈ R

d, so
that conditions (iii), (iv), (v) allow us to apply Lemma 4.5 to conclude that (sn) is indeed
pointwise convergent. Thus we have proved by contradiction that there exists Nk � Nk−1

satisfying (vii). This concludes the inductive step.

The function u. Let us denote by cn the constant value of un on ∂Q0. By (vi), we can put
c :=

∑∞
1 cn and define

u := −c+
+∞∑
n=1

un.

The function u is Z
d-periodic. To show that it is also differentiable, we check the conditions of

Lemma 4.3. For each n ∈ N, let kn be the unique positive integer such that Nkn−1 < n � Nkn
.

From (ii) and (vi), we get ‖u′n‖∞ � ‖vn‖∞ + ‖wn‖∞ � εkn
+ 2−n, so that ‖u′n‖∞ tends to

0. By (vi), we have ‖un+1‖∞ = o(‖un‖∞), and osc(sn, ‖un+1‖∞) < εkn
/4 → 0. Moreover, it

follows as above from (ii)–(v) and Lemma 4.5 that the sequence (sn) is pointwise convergent;
that is, the series

∑
u′n(x) converges at every point x ∈ R

d. Thus, one can apply Lemma 4.3
to conclude that u is everywhere differentiable, and that ∇u is the pointwise limit of the
sequence sn.

The function u vanishes on ∂Q0, and by (o) we also have ∇u = 0 on ∂Q0. It follows from
(ii) that ∇u(x) ∈ U for all x ∈ R

d. Finally, condition (vii) implies that if k � �, then

λd

({x ∈ [0, 1)d : sN�
(x) /∈ ∂Uεk

}) � 2−k.

Sending � to ∞, we get λd

({x ∈ [0, 1)d : ∇u(x) /∈ ∂Uεk
}) � 2−k for all k ∈ N; and sending k to

∞, we conclude that ∇u(x) ∈ ∂U for almost every x ∈ R
d.

Corollary 4.7. Let Ω be an open subset of R
d, and let x0 ∈ Ω. Also let U be a

bounded open subset of R
d containing 0, and put K := sup{‖y‖ : y ∈ U}. Then, there exists a

K-Lipschitz function u : Ω → R with the following properties:
(1) u is bounded and everywhere differentiable in Ω, with ∇u(Ω) ⊂ U ;
(2) u(ξ) = 0 for all ξ ∈ ∂Ω;
(3) ∇u(x0) = 0 and ∇u(x) ∈ ∂U for almost every x ∈ Ω.

When U is the open unit ball, this gives the result announced in the introduction: there
exists a 1-Lipschitz function u : Ω → R, differentiable on Ω, such that u(x) = 0 for all x ∈ ∂Ω,
∇u(x0) = 0 and ‖∇u(x)‖ = 1 almost everywhere. More generally, Corollary 4.7 gives the
existence of non-trivial, differentiable, almost everywhere solutions of the equation F (∇u) = 0,
for any continuous function F : R

d → R such that F (0) 
= 0 and the connected component of
the set {F 
= 0} containing 0 is bounded.

Notice also that the condition ∇u(x0) = 0 is not really essential when the open set Ω
is bounded. Indeed, by Rolle’s theorem, the boundary condition (2) forces ∇u to vanish
somewhere in Ω.

Proof of Corollary 4.7. Let Q be a locally finite cube partition of the open set Ω, with
∂Q ⊂ Ω for all Q ∈ Q and x0 ∈ ∂Q0 for some cube Q0 ∈ Q. By translation and dilation, it
follows from Theorem 4.2 that for each cube Q ∈ Q, one can find an everywhere differentiable
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function uQ : R
d → R such that ∇uQ(x) ∈ U for all x ∈ R

d, ∇uQ(x) ∈ ∂U almost everywhere,
and uQ = 0, ∇uQ = 0 on ∂Q. We define u on Ω in the obvious way: u = uQ on each cube
Q ∈ Q. Then u is everywhere differentiable on Ω. Moreover, we have ∇u(x) ∈ U for all
x ∈ Ω, so, by the mean value theorem, the restriction of u to the closure of each cube Q ∈ Q
is K-Lipschitz. Since u ≡ 0 on the boundary of each cube of the partition Q, it follows that
u is in fact K-Lipschitz on Ω. Indeed, given x1, x2 ∈ Ω, one can find Q1, Q2 ∈ Q such that
xi ∈ Qi and the line segment [x1, x2] intersects both ∂Q1 and ∂Q2, say at points q1 and q2.
Since u(q1) = 0 = u(q2), we have

‖u(x2) − u(x1)‖ � ‖u(x2) − u(q2)‖ + 0 + ‖u(q1) − u(x1)‖
� K (‖x2 − q2‖ + ‖q1 − x1‖)
� K ‖x2 − x1‖.

Therefore, u can be extended to a K-Lipschitz function on Ω with the required properties.
Notice that the boundary condition (2) is satisfied because u vanishes on the boundary of each
cube of the partition Q and the closure of

⋃{∂Q : Q ∈ Q} contains ∂Ω.

Remark 4. In addition to the boundary condition u|∂Ω = 0, one may also impose the
condition ‘∇u = 0 on the boundary’, that is, u(x) = o(‖x− ξ‖) as x→ ξ ∈ ∂Ω. Actually, given
any positive function φ on (0,∞) such that inf{φ(t) : t � α} > 0 for each α > 0, one may
require that |u(x)| � φ (dist(x, ∂Ω)) for all x ∈ Ω.

Proof. Let the function φ be given. If we denote by Qx the unique cube Q ∈ Q containing
x ∈ Ω, then |u(x)| � K diam(Qx), because u is K-Lipschitz and vanishes on ∂Qx. Thus, it
is enough to show that the partition Q can be chosen in such a way that diam(Qx) �
φ (dist(x, ∂Ω)) for all x→ ∂Ω. To do this, start with a cube partition P, and let (δk) be a
sequence of positive numbers. For each k ∈ N, set

Pk =
{
P ∈ P :

1
k + 1

� dist(P, ∂Ω) <
1
k

}′

and subdivide each cube P ∈ Pk into finitely many cubes Q of diameter less than δk. This
gives a cube partition Q with the required additional property if the sequence (δk) is suitably
chosen.

Remark 5. Very recently, M. Zelený was able to construct a differentiable function u on R
d

such that the set (∇u)−1(B(0, 1)) is non-empty and has Hausdorff dimension 1 [12]. As far as
the Denjoy–Clarkson property is concerned, this may be viewed as the ‘optimal’ improvement of
Buczolich’s example. Indeed, Buczolich had shown earlier that for any differentiable function
u on R

d, the set (∇u)−1(B(0, 1)) is either empty or has positive 1-dimensional Hausdorff
measure [2]. Zelený’s proof goes along the same lines as in [9], but several delicate arguments
from geometric measure theory are additionally needed.

Acknowledgements. The authors would like to thank the anonymous referee for a careful
reading of the paper.
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4. M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler, Functional analysis and
infinite-dimensional geometry, CMS Books in Mathematics 8 (Springer, New York, 2001).

5. W. B. Johnson, J. Lindenstrauss, D. Preiss and G. Schechtman, ‘Almost Fréchet differentiability
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