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Abstract. We show that if K is a compact metrizable space, then the Banach
space CpKq has the so-called Blum-Hanson property exactly when K has finitely
many accumulation points. We also show that the space `8pNq “ CpβNq does not
have the Blum-Hanson property.

1. introduction

The following intriguing result is usually referred to as the Blum-Hanson theorem
(see [3] and [6]): if T is a linear operator on a Hilbert space H with }T } ď 1, and if
x P H is such that TnxÑ 0 weakly as nÑ8, then the sequence pTnxq is“strongly
mixing”, which means that every subsequence of pTnxq converges to 0 in the Cesáro
sense; in other words,

lim
KÑ8

›

›

›

›

›

1

K

K
ÿ

i“1

Tnix

›

›

›

›

›

“ 0

for any increasing sequence of integers pniq. (The terminology “strongly mixing”
comes from [2]).

Accordingly, a Banach space X is said to have the Blum-Hanson property if the
Blum-Hanson theorem holds true on X; that is, if T is linear operator on X such
that }T } ď 1, then every weakly null T - orbit is strongly mixing. For example,
it was shown rather recently in [8] that `ppNq has the Blum-Hanson property for
any p P r1,8q. On the other hand, it is known since [1] that CpT2q, the space of
all continuous real-valued functions on the torus T2, does not have this property.
Further results and references can be found in [7].

In this short note, we address the Blum-Hanson property for CpKq spaces. Our
main result is the following:

Theorem 1.1. Let K be a metrizable compact space. Then CpKq has the Blum-
Hanson property if and only if K has finitely many accumulation points.

This will be proved in the next Section. In Section 3, we obtain in much the same
way one nonmetrizable result, namely that the space `8pNq “ CpβNq fails the Blum-
Hanson property. Our two results can be put together to get a single theorem on the
Blum-Hanson property for spaces of bounded continuous functions, which is done
in Section 4. We conclude the paper by stating explicitely the “general principle”
underlying our proofs.
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2. Proof of Theorem 1.1

For the “if” part of the proof, we will make use of a result from [7] which is stated
as Lemma 2.1 below.

Let X be a Banach space. For any x P X and t P R`, set

rXpt, xq :“ sup

"

lim sup
nÑ8

}x` tyn}

*

,

where the supremum is taken over all weakly null sequences pynq Ă X with }yn} ď 1.
Since rXpt, xq is 1-Lipschitz with respect to t, the quantity rXpt, xq ´ t is nonin-

creasing and hence it has a limit as t Ñ 8, possibly equal to ´8. Actually, this
limit is nonnegative if X does not have the Schur property, i.e. there is at least one
weakly null sequence in X which is not norm null.

For the needs of the present paper only, we shall say that the Banach space X
has property (P) if, for every weakly null sequence pxkq Ă X, it holds that

(1) lim
kÑ8

lim
tÑ8

prXpt, xkq ´ tq “ 0 .

The result we need is the following; for the proof, see the Remark just after Theorem
2.1 in [7].

Lemma 2.1. Property (P) implies the Blum-Hanson property.

An extreme example of a space with property (P) is X :“ c0pNq. Indeed, if x P c0

and if pznq is a weakly null sequence in c0, then

lim sup
nÑ8

}x` zn}8 “ maxp}x}8, lim sup }zn}8q .

It follows that

(˚) rc0pt, xq “ maxp}x}, tq ,

so that rc0pt, xq ´ t “ 0 whenever t ě }x}, for any x P c0.

Let us also note the following useful stability property, whose proof is straight-
forward.

Remark 2.2. If X1, . . . , XN are Banach spaces with property (P), then the `8 direct
sum X1 ‘ ¨ ¨ ¨ ‘XN also has (P).

We can now start the proof of theorem 1.1.

Proof of Theorem 1.1. Let us denote by K 1 the set of all accumulation points of
K. We may assume that K 1 ‰ H, since otherwise K is finite and hence CpKq is
finite-dimensional.

(a) Assume first that K 1 is finite say K 1 “ ta1, . . . , aNu, and let us show that
X :“ CpKq has the Blum-Hanson property.

One may write K “ K1Y¨ ¨ ¨YKN , where the Ki are pairwise disjoint compact sets
and K 1

i “ taiu. Then CpKq is isometric to the `8 direct sum CpK1q ‘ ¨ ¨ ¨ ‘ CpKN q,
and each CpKiq is isometric to the space c of all convergent sequences of real numbers.
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Therefore (by Lemma 2.1 and Remark 2.2) it is enough to show that the space c has
property (P).

We view c as the space CpNY t8uq, so that c0 is identified with the subspace of
all f P CpN Y t8uq such that fp8q “ 0. We have to show that if pfkq is a weakly
null sequence in c, then lim

kÑ8
lim
tÑ8

prcpt, fkq ´ tq “ 0 .

Observe first that since fkp8q Ñ 0 as k Ñ 8, one can find a (weakly null)

sequence p rfkq Ă c such that rfk P c0 for all k and } rfk ´ fk}8 Ñ 0: just set rfk :“
fk ´ fkp8q1.

Let pgnq be a weakly null sequence in c with }gn}8 ď 1. As above, choose a
(weakly null) sequence prgnq Ă c such that }rgn ´ gn}8 Ñ 0 and rgn P c0 for all n.
Since }gn}8 ď 1, we may also asume that }rgn}8 ď 1 for all n. Then, since fk and
the rgn are living in c0, we get from p˚q above that for any t P R` and for each k P N:

lim sup
nÑ8

} rfk ` trgn}8 ď rc0pt,
rfkq “ maxp} rfk}8, tq .

By the triangle inequality, it follows that

lim sup
nÑ8

}fk ` tgn}8 ď } rfk ´ fk}8 `maxp} rfk}8, tq

for each k P N and all t ě 0. This being true for any weakly null sequence pgnq with
}gn}8 ď 1, we conclude that

lim
tÑ8

prcpfk, tq ´ tq ď } rfk ´ fk}8

for each k P N, and hence that lim
kÑ8

lim
tÑ8

prcpt, fkq ´ tq “ 0 .

(b) Now assume that K 1 is infinite. Since K is metrizable, it follows that K
contains a compact set S of the following form:

S “
8
ď

k“1

”

tsi,k; i P Nu Y ts8,ku
ı

Y ts8,8u ,

where all the points involved are distinct and

‚ si,k Ñ s8,k as iÑ8 for each fixed k ě 1;
‚ s8,k Ñ s8,8 as k Ñ8;
‚ the sets Sk :“ tsi,k; i P Nu Y ts8,ku “accumulate to ts8,8u”, i.e. they are

eventually contained in any neighbourhood of s8,8.

Thus, we have S1 “ ts8,k; k ě 1u Y ts8,8u and S2 “ ts8,8u.

The key point is now to construct a special continuous map θ : S Ñ S and to
consider the associated composition operator Cθ acting on CpSq. This is the same
strategy as in [1], in our setting.

Fact 1. One can construct a continuous map θ : S Ñ S such that, denoting by θn

the iterates of θ, the following properties hold true.

(i) θnpsq Ñ s8,8 pointwise on S as nÑ8;
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(ii) there exists an open neighbourhood V of s8,8 in S such that

sup
sPS

#tn P N; θnpsq R V u “ 8 .

Proof. We define the map θ as follows:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

θps8,8q “ s8,8
θpsi,kq “ si,k´1 if k ě 2
θps8,kq “ s8,k´1 if k ě 2
θpsi,1q “ si´1,i´1 if i ě 2
θps8,1q “ s8,8
θps1,1q “ s8,8

It is clear that θ is continuous at each point s8,k, k ě 2. Moreover, since
si´1,i´1 Ñ s8,8 as i Ñ 8, the map θ is also continuous at s8,1 and at s8,8.
Since all other points of S are isolated, it follows that θ is continuous on S.

An examination of the orbits of θ reveals that for any s P S, we have θnpsq “
s8,8 for all but finitely many n P N. Indeed, if s “ s8,k for some k P N, then
Orbps, θq “ ts8,k, s8,k´1, . . . , s8,1, s8,8u, whereas if s “ si,k for some pi, kq P NˆN,
then Orbps, θq “ tsi,k, si,k´1, . . . , si,1, si´1,i´1, . . . , si´1,1, si´2,i´2 . . . , s1,2, s1,1, s8,8u.
So property (i) is satisfied.

Set V :“ SzS1, where S1 “ tsi,1; i P Nu Y ts8,1u. This is an open (actually
clopen) neighbourhood of s8,8 in S. For any N P N, the orbit of sN :“ sN,1
contains exactly N points of SzV “ S1, namely sN,1, sN´1,1, . . . , s1,1. So property
(ii) is satisfied as well. �

From Fact 1, it is straightforward to deduce

Fact 2. The space CpSq does not have the Blum-Hanson property.

Proof. Let θ : S Ñ S be given by Fact 1, and let Cθ : CpSq Ñ CpSq be the composi-
tion operator associated with θ:

Cθu “ u ˝ θ for all u P CpSq.
By property (i) above, we see that Cnθ uÑ ups8,8q1 weakly as nÑ 8, for every

u P CpSq.
Let us choose a function f P CpSq such that fps8,8q “ 0 and f ” 1 on F :“ SzV ,

where V satisfies (ii). Then Cnθ f Ñ 0 weakly. On the other hand, since f ” 1 on F
it follows from (ii) that one can find points s P S such that #tn P N; Cnθ fpsq “ 1u
is arbitrarily large. So we have

1

#I

›

›

›

›

›

ÿ

nPI

Cnθ f

›

›

›

›

›

8

ě 1

for finite sets I Ă N with arbitrarily large cardinality. From this, it is a simple
matter to deduce that the sequence pCnθ fq is not strongly mixing, which concludes
the proof of Fact 2. �

It is now easy to conclude the proof of Theorem 1.1, by using the following trivial
observation.
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Fact 3. Let X be a Banach space, and let Z be a closed subspace of X. Assume
that Z is 1 - complemented in X, i.e. there is a linear projection π : X Ñ Z such
that }π} “ 1. If Z fails the Blum-Hanson property, then so does X.

Proof. If T : Z Ñ Z and z P Z witness that Z fails the Blum-Hanson property, then
rT :“ T ˝ π : X Ñ Z Ă X and z witness that so does X. �

It is well known that since K is metrizable, there is an isometric linear extension
operator J : CpSq Ñ CpKq: this is a classical result due to Dugundji [4]. So the space
CpSq is isometric to a 1 - complemented subspace of CpKq, namely Z :“ J rCpSqs.
By Fact 3, this concludes the proof of Theorem 1.1.

�

Remark 1. The above proof shows that the space CpSq fails the Blum-Hanson prop-
erty in a very special way. Namely, there exists a composition operator Cθ on CpSq
all whose orbits are weakly convergent and such that some weakly null orbit is not
strongly mixing. As shown in [1], the same is true for the space CpT2q. On the other
hand, it is observed in [7] that this is not so in the space Cpr0, 1sq, for the following
reason: if θ : r0, 1s Ñ r0, 1s is a continuous map and if the iterates θn converge
pointwise to some continuous map α : r0, 1s Ñ r0, 1s, then the convergence is in fact
uniform.

Remark 2. Our proof gives in fact the following more precise result: if K has finitely
accumulation points, then CpKq has property (P); and otherwise, one can find an
operator T on CpKq with }T } ď 1 such that all T - orbits are weakly convergent and
some wealy null orbit is not strongly mixing.

3. One nonmetrizable example

We have been unable to show without the metrizability assumption on K that
CpKq fails the Blum-Hanson property if K has infinitely many accumulation points.
Note that metrizability was used twice in the proof of Theorem 1.1: to ensure that
if K 1 is infinite then K contains the special compact set S; and for the existence of
an isometric (linear) extension operator J : CpSq Ñ CpKq.

It is well known that the linear extension theorem may fail in the nonmetriz-
able case (see e.g. [9, Remark 2.3]). The simplest way to see this is to observe
that if there exists a linear extension operator J : CpSq Ñ CpKq then, denoting
by R : CpKq Ñ CpSq the canonical restriction map, the operator π :“ JR is a
continuous projection on CpKq with kernel IpSq :“ tf P CpKq; f|S “ 0u; in partic-
ular, IpSq is a complemented subspace of CpKq. But this may fail for some pairs
pK,Sq; for example, one may take pK,Sq “ pβN, βNzNq, where βN is the Stone-Čech
compactification of N, since CpKq “ `8pNq and IpβNzNq “ c0pNq.

It may also happen that a compact set K has infinitely many accumulation points
and yet does not contain any compact set like S. For example, this holds for K “ βN
because there are no nontrivial convergent sequences in βN. However, in this (very)
special case it is possible to adapt the proof of Theorem 1.1 to obtain the following
result.
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Proposition 3.1. The space `8pNq “ CpβNq does not have the Blum-Hanson prop-
erty.

Proof. It will be more convenient to view `8 as `8pNˆ Nq “ CpβpNˆ Nqq.
Let θ : N ˆ N Ñ N ˆ N be essentially the same map as in the proof of Theorem

1.1 but ignoring the limit points:
$

&

%

θpi, kq “ pi, k ´ 1q if k ě 2
θpi, 1q “ pi´ 1, i´ 1q if i ě 2
θp1, 1q “ p1, 1q

We denote by Cθ the asociated composition operator acting on `8 “ `8pNˆNq, i.e

Cθfpi, kq “ fpθpi, kqq for every pi, kq P Nˆ N .

Set f :“ 1F P `8pN ˆ Nq, where F “ tpi, 1q; i ě 1uztp1, 1qu “ tpi, 1q; i ě 2u.
Exactly as in the proof of Theorem 1.1, one checks that the sequence pCnθ fq is not
strongly mixing in `8pN ˆ Nq. So it is enough to show that, on the other hand,
Cnθ f Ñ 0 weakly in `8pNˆ Nq.

Viewing `8pNˆ Nq as CpβpNˆ Nqq, we have to show that Cnθ fpUq Ñ 0 for every
ultrafilter U on Nˆ N. Let us fix such an ultrafilter U .

Since Cnθ f “ Cnθ 1F “ 1θ´npF q when considered as an element of `8pN ˆ Nq, we
have for any n P N:

Cnθ fpUq “
"

1 if θ´npF q P U
0 if θ´npF q R U

So we need to prove that if n is large enough, then θ´npF q R U .

Observe first that if we set S1 :“ Nˆt1u, then θ´npS1qXS1 is finite for every n P N.
This is readily checked from the definition of θ. Indeed, for each s “ pi, 1q P S1, the
first n P N such that θnpsq P S1 is at least equal (in fact, exactly equal) to i; so for
each fixed n there are at most n points s P S1 such that θnpsq P S1.

Since F Ă S1 and θ is finite -to- one, it follows that θ´npF q X θ´n
1

pF q is finite
whenever n ‰ n1.

Now, assume without loss of generality that θ´npF q P U for more than one n P N.
Then, by what we have just observed, U contain a finite set. Hence, U is a principal
ultrafilter, defined by some point s0 P NˆN. On the other hand, we know from the
definition of the map θ that θnps0q “ p1, 1q for all but finitely many n P N. Since
p1, 1q R F , it follows that θ´npF q R U for all but finitely many n.

�

From Proposition 3.1, we immediately deduce

Corollary 3.2. The space L8 “ L8p0, 1q does not have the Blum-Hanson property.
Likewise, if His an infinite-dimensional Hilbert space, then the space BpHq of all
bounded operators on H does not have the Blum-Hanson property.

Proof. This is clear since these two spaces contain a 1 - complemented isometric copy
of `8. �
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4. Further remarks

For any topological space E, let us denote by CbpEq the space of all real-valued,
bounded continuous functions on E. Putting together Theorem 1.1 and Proposition
3.1, we obtain the following result.

Theorem 4.1. If T is a metrizable topological space, then CbpT q has the Blum-
Hanson property exactly when T is compact and has finitely many accumulation
points.

Proof. By Theorem 1.1, it is enough to show that if CbpT q has the Blum-Hanson
property, then T is compact. Now, if T is not compact, it contains a countably
infinite closed discrete set S (thanks to the metrizability assumption). By Dugundji’s
extension theorem, CbpT q then contains a 1 - complemented isometric copy of CbpSq.
Since CbpSq is isometric to `8pNq, it follows from Proposition 3.1 that CbpT q does
not have the Blum-Hanson property. �

To conclude this paper, and since this may be useful elsewhere, we isolate the
following kind of criterion for detecting the failure of the Blum-Hanson property in
CbpT q for a not necessarily metrizable topological space T .

Lemma 4.2. Let T be a Hausdorff topological space. Assume that there exists
a subset S of T which is normal as a topological space, such that the following
properties hold true.

(1) One can find a continuous map θ : S Ñ S and a point a P S such that

(i) θnpsq Ñ a pointwise on S as nÑ8;
(ii) there exists an open neighbourhood V of a such that

sup
sPS

#tn P N; θnpsq R V u “ 8 ;

(iii) there exists a further open neighbourhood W of a with W Ă V such that,
for any infinite set N Ă N, one can find n1, . . . , np P N such that the
set θ´n1pSzW q X ¨ ¨ ¨ X θ´nppSzW q is finite.

(2) There is a linear isometric extension operator J : CbpSq Ñ CbpT q.
Then, one can conclude that the space CbpT q fails the Blum-Hanson property.

Proof. By (2), it is enough to show that CbpSq does not have the Blum-Hanson
property. This will of course be done by considering the composition operator Cθ :
CbpSq Ñ CbpSq.

Since W Ă V by (iii) and S is normal, one can choose a function f P CbpSq such
that f ” 0 on W and f ” 1 on F :“ SzV . By condition (ii) in (1), the sequence
pCnθ fq is not strongly mixing; so we just need to check that Cnθ f Ñ 0 weakly in
CbpSq.

Being Hausdorff and normal, the space S is completely regular; so the space CbpSq
is canonically isometric with CpβSq, where βS is the Stone-Čech compactification
of S. The latter can be described as the space of all z-ultrafilters on S, i.e maximal
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filters of zero sets for functions in CbpSq, or, equivalently (since S is normal) maximal
filters of closed subsets of S; see [5]. Therefore, what we have to do is to show that

lim
nÑ8

„

lim
U
fpθnpsqq



“ 0 for any z-ultrafilter U on S .

If U is a “principal” z-ultrafilter defined by some s0 P S, i.e. U is convergent
with limit s0, then limU fpθ

npsqq “ fpθnps0qq for all n, so the result is clear since
fpθnps0qq Ñ fpaq “ 0 as nÑ8 by (i).

Now, let us assume that U is not principal. Then U does not contain any finite
set. Indeed, if a maximal filter of closed sets contains a finite union of closed sets
F1 Y ¨ ¨ ¨ Y FN , then it has to contain one of the Fi by maximality; so, if U were to
contain a finite set, then it would contain a singleton and hence would be principal
in a trivial way. By (iii), it follows that θ´npSzW q R U for all but finitely many
n P N; and since U is a maximal filter of closed sets, this implies that θ´npW q P U
for all but finitely many n. Since f ” 0 on W , it follows that limU fpθ

npsqq “ 0 for
all but finitely many n, which concludes the proof.

�

Remark 1. This lemma would be much neater if condition (iii) above could be dis-
pensed with; but we don’t know how to prove the lemma without it. The proof of
Theorem 1.1 shows that when S is compact, (i) and (ii) alone are enough for CpSq to
fail the Blum-Hanson property. At the other extreme, the proof of Proposition 3.1
shows that when S is discrete (and infinite), one can find a map θ : S Ñ S satisfying
(i), (ii) and a property stronger than (iii).

Remark 2. When S is compact, condition (iii) actually follows from (i). Indeed, let
W be any open neighbourhood of a, and assume that (iii) fails for W and some
infinite set N Ă N. Then, by compactness we have

Ş

nPN θ´npSzW q ‰ H. But if
s P

Ş

nPN θ´npSzW q then θnpsq does not tend to a as nÑ8, which contradicts (i).
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