THE BLUM-HANSON PROPERTY FOR (C(K) SPACES

PASCAL LEFEVRE AND ETIENNE MATHERON

ABSTRACT. We show that if K is a compact metrizable space, then the Banach
space C(K') has the so-called Blum-Hanson property exactly when K has finitely
many accumulation points. We also show that the space £ (N) = C(SN) does not
have the Blum-Hanson property.

1. INTRODUCTION

The following intriguing result is usually referred to as the Blum-Hanson theorem
(see [3] and [6]): if T is a linear operator on a Hilbert space H with |7 < 1, and if
x € H is such that T"x — 0 weakly as n — o0, then the sequence (T"x) is“strongly
mixing”, which means that every subsequence of (T"x) converges to 0 in the Ceséro
sense; in other words,

lim =0
K—w

1 K
_ Tni

for any increasing sequence of integers (n;). (The terminology “strongly mixing”
comes from [2]).

Accordingly, a Banach space X is said to have the Blum-Hanson property if the
Blum-Hanson theorem holds true on X; that is, if T is linear operator on X such
that |7 < 1, then every weakly null T -orbit is strongly mixing. For example,
it was shown rather recently in [8] that ¢,(N) has the Blum-Hanson property for
any p € [1,00). On the other hand, it is known since [1] that C(T?), the space of
all continuous real-valued functions on the torus T?, does not have this property.
Further results and references can be found in [7].

In this short note, we address the Blum-Hanson property for C(K) spaces. Our
main result is the following:

Theorem 1.1. Let K be a metrizable compact space. Then C(K) has the Blum-
Hanson property if and only if K has finitely many accumulation points.

This will be proved in the next Section. In Section 3, we obtain in much the same
way one nonmetrizable result, namely that the space ¢, (N) = C(ON) fails the Blum-
Hanson property. Our two results can be put together to get a single theorem on the
Blum-Hanson property for spaces of bounded continuous functions, which is done
in Section 4. We conclude the paper by stating explicitely the “general principle”
underlying our proofs.
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2. PROOF OoF THEOREM 1.1

For the “if” part of the proof, we will make use of a result from [7] which is stated
as Lemma 2.1 below.
Let X be a Banach space. For any x € X and t € RT, set

rx(t,x) := sup {hmsup |z + tyn|} )

n—0oo

where the supremum is taken over all weakly null sequences (y,) < X with ||y, | < 1.

Since rx (t,x) is 1-Lipschitz with respect to ¢, the quantity rx (t,z) — t is nonin-
creasing and hence it has a limit as ¢ — o0, possibly equal to —oo. Actually, this
limit is nonnegative if X does not have the Schur property, i.e. there is at least one
weakly null sequence in X which is not norm null.

For the needs of the present paper only, we shall say that the Banach space X
has property (P) if, for every weakly null sequence (zx) < X, it holds that

(1) Jim lim (rx(t,2) —) = 0.

The result we need is the following; for the proof, see the Remark just after Theorem
2.1 in [7].

Lemma 2.1. Property (P) implies the Blum-Hanson property.

An extreme example of a space with property (P) is X := ¢y(N). Indeed, if = € ¢y
and if (z,) is a weakly null sequence in ¢p, then

limsup |z + 2yl = max (|||, limsup [z, o) -
n—aoo

It follows that
(*) Teo (t7 $) = maX(quvt) )
so that r¢,(t,z) —t = 0 whenever ¢t > |z, for any z € co.

Let us also note the following useful stability property, whose proof is straight-
forward.

Remark 2.2. If X;,..., Xy are Banach spaces with property (P), then the {y, direct
sum X1 @ ---@® Xy also has (P).

We can now start the proof of theorem 1.1.

Proof of Theorem 1.1. Let us denote by K’ the set of all accumulation points of
K. We may assume that K’ # ¢, since otherwise K is finite and hence C(K) is
finite-dimensional.

(a) Assume first that K’ is finite say K’ = {ai1,...,an}, and let us show that
X :=C(K) has the Blum-Hanson property.

One may write K = Kju---u Ky, where the K; are pairwise disjoint compact sets
and K] = {a;}. Then C(K) is isometric to the o direct sum C(K;)®---® C(Kn),
and each C(Kj;) is isometric to the space c of all convergent sequences of real numbers.
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Therefore (by Lemma 2.1 and Remark 2.2) it is enough to show that the space ¢ has
property (P).
We view ¢ as the space C(N u {00}), so that ¢ is identified with the subspace of

all f € C(N u {o0}) such that f(o0) = 0. We have to show that if (fx) is a weakly
null sequence in ¢, then klim lim (r.(¢, fx) —t) =0.
—00 t—00

Observe first that since fi(o0) — 0 as k — o0, one can find a (weakly null)
sequence (fk) C ¢ such that fk. € ¢o for all k and ka — frlloo — 0: just set fk =

Je — fr(o0)1.

Let (gn) be a weakly null sequence in ¢ with |g,/c < 1. As above, choose a
(weakly null) sequence (g,,) < ¢ such that |g, — gnllcc — 0 and g, € ¢o for all n.
Since ||gnllc < 1, we may also asume that |[gn [ < 1 for all n. Then, since f; and
the g, are living in cg, we get from (x) above that for any ¢ € R™ and for each k € N:

limsup | f + tnlon < 7eq (t, fi) = max(|| fi oo, 1) -

n—aoo
By the triangle inequality, it follows that
limsup | f + tgnlo < | fx = frloo + max(|| fi oo, £)

n—o0

for each k € N and all ¢ = 0. This being true for any weakly null sequence (g,,) with
lgnlo < 1, we conclude that

tlgg} (re(fe,t) —t) < ka — frlloo

for each k € N, and hence that hm lim (rc(t, fr) —t) =0.

k—o0 t—0

(b) Now assume that K’ is infinite. Since K is metrizable, it follows that K
contains a compact set S of the following form:

S = LO_OJ [{Sz‘,k; ieN}u {soo,k}] U {500,005
k=1

where all the points involved are distinct and
® Sk — Seo i as ¢ — o0 for each fixed k > 1
® Sk —> S0 S k — 005
o the sets Sy 1= {s;x; i € N} U {sp} “accumulate to {sy }”, i.e. they are
eventually contained in any neighbourhood of s .
Thus, we have S" = {so 1; k= 1} U {Sop,00} and S” = {s0,00}

The key point is now to construct a special continuous map 6 : S — S and to
consider the associated composition operator Cp acting on C(S). This is the same
strategy as in [1], in our setting.

Fact 1. One can construct a continuous map 6 : S — S such that, denoting by 6"
the iterates of @, the following properties hold true.

(i) 0"(s) = So,00 pointwise on S as n — 0;
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(ii) there exists an open neighbourhood V' of sy o in S such that
sup #{neN; 0"(s) ¢ V} =0.
seS

Proof. We define the map 6 as follows:

( 9<Soo,oo) = So,0
9(8@&) = Sik—1 if k =2
) 0(8007]{) = Sw,k—1 if k =2
(9(81"1) = Si—1,-1 if 4 =2
6(300,1) = Soo,0
6(31,1) = S,

It is clear that 6 is continuous at each point sy, kK = 2. Moreover, since
Si—1,i—1 — Sw,c0 as @ — 00, the map 6 is also continuous at s, 1 and at se 0.
Since all other points of S are isolated, it follows that 6 is continuous on S.

An examination of the orbits of € reveals that for any s € S, we have 6"(s) =
Soo,00 for all but finitely many n € N. Indeed, if s = s, for some k& € N, then
Orb(s,0) = {Sco k» Soo,k—15 - - - » Sao,1, Sao,00 }, Whereas if s = s; 1, for some (i, k) e Nx N,
then Orb(s, ) = {Si,k,si,k—l, ey 841, Si—1i—1y - 05 Si—1,15 8i—2,i—2 - - -, 51,2, 31,17300,00}'
So property (i) is satisfied.

Set V' := S\Si, where S1 = {si1; i € N} U {sx1}. This is an open (actually

clopen) neighbourhood of sy o in S. For any N € N, the orbit of sy := sy
contains exactly N points of S\V = Si, namely sy1,5n-11,...,51,1. S0 property
(ii) is satisfied as well. O

From Fact 1, it is straightforward to deduce
Fact 2. The space C(S) does not have the Blum-Hanson property.

Proof. Let 6 : S — S be given by Fact 1, and let Cp : C(S) — C(S) be the composi-
tion operator associated with 6:
Cou=wuof forall ueC(S).

By property (i) above, we see that Cju — u(sx,0)1 weakly as n — oo, for every
ueC(9).

Let us choose a function f € C(S) such that f(sw,0) =0and f =1on F := S\V,
where V' satisfies (ii). Then Cp f — 0 weakly. On the other hand, since f =1 on F
it follows from (ii) that one can find points s € S such that #{n e N; Cy f(s) = 1}
is arbitrarily large. So we have

=1

0

1
1. Chf
#[ nel
for finite sets I — N with arbitrarily large cardinality. From this, it is a simple
matter to deduce that the sequence (Cy f) is not strongly mixing, which concludes

the proof of Fact 2. O

It is now easy to conclude the proof of Theorem 1.1, by using the following trivial
observation.
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Fact 3. Let X be a Banach space, and let Z be a closed subspace of X. Assume
that Z is 1-complemented in X, i.e. there is a linear projection m : X — Z such
that |7| = 1. If Z fails the Blum-Hanson property, then so does X.

szof. IfT:7Z — Z and z € Z witness that Z fails the Blum-Hanson property, then
T:=Tom:X — Z c X and z witness that so does X. O

It is well known that since K is metrizable, there is an isometric linear extension
operator J : C(S) — C(K): this is a classical result due to Dugundji [4]. So the space
C(S) is isometric to a 1-complemented subspace of C(K), namely Z := J[C(S)].
By Fact 3, this concludes the proof of Theorem 1.1.

O

Remark 1. The above proof shows that the space C(.5) fails the Blum-Hanson prop-
erty in a very special way. Namely, there exists a composition operator Cy on C(S)
all whose orbits are weakly convergent and such that some weakly null orbit is not
strongly mixing. As shown in [1], the same is true for the space C(T?). On the other
hand, it is observed in [7] that this is not so in the space C([0, 1]), for the following
reason: if 6 : [0,1] — [0,1] is a continuous map and if the iterates " converge
pointwise to some continuous map « : [0,1] — [0, 1], then the convergence is in fact
uniform.

Remark 2. Our proof gives in fact the following more precise result: if K has finitely
accumulation points, then C(K) has property (P); and otherwise, one can find an
operator T' on C(K) with ||T'| < 1 such that all T - orbits are weakly convergent and
some wealy null orbit is not strongly mixing.

3. ONE NONMETRIZABLE EXAMPLE

We have been unable to show without the metrizability assumption on K that
C(K) fails the Blum-Hanson property if K has infinitely many accumulation points.
Note that metrizability was used twice in the proof of Theorem 1.1: to ensure that
if K’/ is infinite then K contains the special compact set S; and for the existence of
an isometric (linear) extension operator J : C(S) — C(K).

It is well known that the linear extension theorem may fail in the nonmetriz-
able case (see e.g. [9, Remark 2.3]). The simplest way to see this is to observe
that if there exists a linear extension operator J : C(S) — C(K) then, denoting
by R : C(K) — C(S) the canonical restriction map, the operator 7 := JR is a
continuous projection on C(K) with kernel I(S) := {f € C(K); fis = 0}; in partic-
ular, I(S) is a complemented subspace of C(K). But this may fail for some pairs
(K, S); for example, one may take (K, S) = (8N, SN\N), where AN is the Stone-Cech
compactification of N, since C(K) = ¢ (N) and I(SN\N) = ¢y(N).

It may also happen that a compact set K has infinitely many accumulation points
and yet does not contain any compact set like S. For example, this holds for K = SN
because there are no nontrivial convergent sequences in SN. However, in this (very)
special case it is possible to adapt the proof of Theorem 1.1 to obtain the following
result.
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Proposition 3.1. The space £ (N) = C(BN) does not have the Blum-Hanson prop-
erty.

Proof. 1t will be more convenient to view £4 as £ (N x N) = C(S(N x N)).

Let 0 : N x N —» N x N be essentially the same map as in the proof of Theorem
1.1 but ignoring the limit points:

k) = (hk—1)  ifk>2
9(2’,1) = (i—l,i—l) ifi>2
9(171) = (171)

We denote by Cy the asociated composition operator acting on £y, = (N x N), i.e
Cof(i, k)= f(0(i,k)) for every (i,k) e N x N.

Set f:=1p € Lyn(N x N), where F' = {(¢,1); i = 1}\{(1,1)} = {(3,1); i = 2}.
Exactly as in the proof of Theorem 1.1, one checks that the sequence (Cy f) is not
strongly mixing in 5 (N x N). So it is enough to show that, on the other hand,
Cyf — 0 weakly in £ (N x N).

Viewing £, (N x N) as C(S(N x N)), we have to show that Cy f(U) — 0 for every
ultrafilter & on N x N. Let us fix such an ultrafilter /.

Since Cy f = Cylp = lg-n(r) when considered as an element of £ (N x N), we
have for any n € N:

" {1 ife(F)eU
Corw) = {o if 0" (F) ¢ U

So we need to prove that if n is large enough, then 07" (F) ¢ U.

Observe first that if we set S7 := Nx {1}, then §7"(S51)n.S] is finite for every n € N.
This is readily checked from the definition of 6. Indeed, for each s = (i,1) € Sy, the
first n € N such that 0™(s) € Sy is at least equal (in fact, exactly equal) to #; so for
each fixed n there are at most n points s € Sy such that 6"(s) € Si.

Since F — S) and 6 is finite-to- one, it follows that ~"(F) n §~" (F) is finite
whenever n # n/.

Now, assume without loss of generality that §~"(F') € U for more than one n € N.
Then, by what we have just observed, U contain a finite set. Hence, I is a principal
ultrafilter, defined by some point sg € N x N. On the other hand, we know from the
definition of the map 6 that 6"(sg) = (1,1) for all but finitely many n € N. Since
(1,1) ¢ F, it follows that 67" (F) ¢ U for all but finitely many n.

O

From Proposition 3.1, we immediately deduce

Corollary 3.2. The space Loy, = Lyp(0,1) does not have the Blum-Hanson property.
Likewise, if His an infinite-dimensional Hilbert space, then the space B(H) of all
bounded operators on H does not have the Blum-Hanson property.

Proof. This is clear since these two spaces contain a 1 - complemented isometric copy
of £ O
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4. FURTHER REMARKS

For any topological space FE, let us denote by Cy(E) the space of all real-valued,
bounded continuous functions on E. Putting together Theorem 1.1 and Proposition
3.1, we obtain the following result.

Theorem 4.1. If T is a metrizable topological space, then Cy(T) has the Blum-
Hanson property exactly when T is compact and has finitely many accumulation
points.

Proof. By Theorem 1.1, it is enough to show that if Cy(7") has the Blum-Hanson
property, then T is compact. Now, if T is not compact, it contains a countably
infinite closed discrete set S (thanks to the metrizability assumption). By Dugundji’s
extension theorem, Cp(T') then contains a 1-complemented isometric copy of Cp(S).
Since Cp(S) is isometric to £ (N), it follows from Proposition 3.1 that Cy(T") does
not have the Blum-Hanson property. O

To conclude this paper, and since this may be useful elsewhere, we isolate the
following kind of criterion for detecting the failure of the Blum-Hanson property in
Cy(T') for a not necessarily metrizable topological space T

Lemma 4.2. Let T be a Hausdorff topological space. Assume that there exists
a subset S of T which is normal as a topological space, such that the following
properties hold true.

(1) One can find a continuous map 0 : S — S and a point a € S such that
(i) 0™(s) — a pointwise on S as n — 0;
(ii) there exists an open neighbourhood V' of a such that
sup #{neN; 0"(s) ¢ V} = o0;
seS
(iii) there ewists a further open neighbourhood W of a with W <V such that,
for any infinite set N < N, one can find n1,...,n, € N such that the
set 07" (S\W) -+ n 07 (S\W) is finite.
(2) There is a linear isometric extension operator J : Cp(S) — Cp(T).

Then, one can conclude that the space Cy(T) fails the Blum-Hanson property.

Proof. By (2), it is enough to show that Cp(S) does not have the Blum-Hanson
property. This will of course be done by considering the composition operator Cy :
Co(S) = Co(S).

Since W < V by (iii) and S is normal, one can choose a function f € Cp(S) such
that f =0on W and f =1 on F := S\V. By condition (ii) in (1), the sequence
(Cg f) is not strongly mixing; so we just need to check that Cyf — 0 weakly in
Cp(S).

Being Hausdorff and normal, the space S is completely regular; so the space Cp(.5)
is canonically isometric with C(8S5), where 3S is the Stone-Cech compactification
of S. The latter can be described as the space of all z-ultrafilters on .S, i.e maximal
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filters of zero sets for functions in Cy(S), or, equivalently (since S is normal) maximal
filters of closed subsets of S; see [5]. Therefore, what we have to do is to show that

nli_{rgo [h&n f(ﬁn(s))} =0 for any z-ultrafilter &/ on S

If U is a “principal” z-ultrafilter defined by some sy € S, i.e. U is convergent
with limit sg, then limy f(0™(s)) = f(6™(so)) for all n, so the result is clear since
f(0™(s0)) = f(a) = 0 as n — oo by (i).

Now, let us assume that U is not principal. Then U does not contain any finite
set. Indeed, if a maximal filter of closed sets contains a finite union of closed sets
Fy U --- U Fy, then it has to contain one of the F; by maximality; so, if i were to
contain a finite set, then it would contain a singleton and hence would be principal
in a trivial way. By (iii), it follows that 6~"(S\W) ¢ U for all but finitely many
n € N; and since U is a maximal filter of closed sets, this implies that 6~"(W) € U
for all but finitely many n. Since f =0 on W, it follows that limy, f(6"(s)) = 0 for
all but finitely many n, which concludes the proof.

O

Remark 1. This lemma would be much neater if condition (iii) above could be dis-
pensed with; but we don’t know how to prove the lemma without it. The proof of
Theorem 1.1 shows that when S is compact, (i) and (ii) alone are enough for C(.5) to
fail the Blum-Hanson property. At the other extreme, the proof of Proposition 3.1
shows that when S is discrete (and infinite), one can find a map 6 : S — S satisfying
(i), (ii) and a property stronger than (iii).

Remark 2. When S is compact, condition (iii) actually follows from (i). Indeed, let
W be any open neighbourhood of a, and assume that (iii) fails for W and some
infinite set N < N. Then, by compactness we have [, 0 "(S\W) # &. But if
$ €[ )en 0" (S\W) then 6"(s) does not tend to a as n — o0, which contradicts (i).
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