Université d'Artois Faculté des sciences Jean Perrin Licence-Master Maths Module Variable complexe

Examen du 26 Juin 2009

Durée: 4h Sans documents

Exercice 1. Soient r_0, r_1 vérifiant $0 \le r_0 < r_1 \le \infty$ et soit f une fonction holomorphe dans un ouvert contenant la couronne

$$V = \{ z \in \mathbb{C}; \ r_0 < |z| < r_1 \}.$$

- (1) On note $f(z) = \sum_{n \in \mathbb{Z}} c^n z^n$ le développement de f en série de Laurent dans la couronne V.

 - (a) Exprimer le coefficient c_{-1} par une formule intégrale. (b) Montrer que la série $\sum_{n\neq -1}\frac{c_n}{n+1}z^{n+1}$ converge normalement sur les compacts de V.
- (2) Déduire de (1) que la fonction f possède une primitive (holomorphe) dans la couronne V si et seulement si

$$\int_{\partial D(0,r)} f(z) \, dz = 0$$

pour tout $r \in]r_0, r_1[$.

(3) Dans cette question, on suppose que f est une fraction rationnelle dont tous les pôles sont dans le disque ouvert $D(0, r_0)$. On note \mathcal{P} l'ensemble des pôles de f. Montrer que f possède une primitive dans V si et seulement si

$$\sum_{a \in \mathcal{P}} \operatorname{Res}(f, a) = 0.$$

(4) Déterminer si les fonctions $f_1(z) = \frac{z}{(z-1)(z-2)(z-3)}$ et $f_2(z) = \frac{z^2}{(z-1)(z-2)(z-3)}$ possèdent des primitives dans la couronne $\{|z| > 4\}$.

Exercice 2. Soit f une fonction holomorphe non constante dans le disque unité \mathbb{D} , $f(z) = \sum_{n=0}^{\infty} c_n z^n$. On suppose qu'on a

$$\sum_{n=2}^{\infty} n|c_n| \le |c_1|.$$

- (1) Montrer que $c_1 \neq 0$.
- (2) On pose $h(z) = f(z) c_1 z$. Exprimer h'(z) à l'aide des coefficients c_n , et en déduire que pour tout $r \in [0, 1]$, on a

$$\sup_{z \in \overline{D}(0,r)} |h'(z)| \le |c_1| r.$$

(3) En utilisant (2), montrer que si z_0 est un point quelconque de \mathbb{D} et si r vérifie $|z_0| < r < 1$, alors

$$|f(\xi) - f(z_0) - c_1(\xi - z_0)| < |c_1(\xi - z_0)|$$

pour tout $\xi \in \partial D(0,r)$. Que peut-on en déduire sur le nombre de zéros de la function $z \mapsto f(z) - f(z_0)$ dans le disque D(0, r)?

(4) Montrer que la fonction f est injective.

Exercice 3. Dans tout l'exercice, on fixe $s = x + iy \in \mathbb{C}$, avec 0 < x < 1. On rappelle la définition de $\Gamma(s)$:

$$\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt.$$

- (1) Pour $z = re^{it} \in \mathbb{C} \setminus \mathbb{R}^-$ et $\lambda = a + ib \in \mathbb{C}$, on pose $z^{\lambda} = e^{\lambda \log z}$, où log est la détermination principale du logarithme. Exprimer $|z^{\lambda}|$ en fonction de r, t, a
- (2) pour r > 0, on note $\gamma_r : [0, \pi/2] \to \mathbb{C}$ le chemin défini par $\gamma_r(t) = re^{it}$, et on

$$I(r) = \int_{\gamma_r} z^{s-1} e^{-z} dz.$$

- (a) Montrer qu'on a $|I(r)| \le e^{\frac{\pi}{2}|y|} r^x \int_0^{\pi/2} e^{-r\cos t} dt$. (b) Comparer $\cos t$ et $1 \frac{2}{\pi} t$ pour $t \in [0, \pi/2]$.
- (c) Montrer qu'on a $\lim_{\varepsilon\to 0} I(\varepsilon) = 0 = \lim_{R\to\infty} I(R)$.
- (3) En utilisant (2c) et le théorème de Cauchy, établir la formule

$$\int_0^\infty t^{s-1}e^{-it}dt = e^{-i\pi s/2} \Gamma(s).$$

Exercice 4. Soit \mathbb{D} le disque unité de \mathbb{C} , et soit $f:\mathbb{D}\to\mathbb{C}$ une fonction holomorphe vérifiant f(0) = 0 et $|f(z)| \le 1$ pour tout $z \in \mathbb{D}$. On écrit $f(z) = \sum_{n=0}^{\infty} c_n z^n$.

- (1) Combien vaut c_0 ?
- (2) Pourquoi a-t-on $|f(z)| \leq |z|$ pour tout $z \in \mathbb{D}$?

(3) Pour $z \in \mathbb{D} \setminus \{0\}$, on pose

$$g(z) = \frac{f(z) + f(-z)}{2z} \cdot$$

Montrer que la fonction g se prolonge en une fonction \tilde{g} holomorphe sur \mathbb{D} , et déterminer le développement de \tilde{q} en série entière.

(4) En utilisant le lemme de Schwarz, montrer qu'on a

$$\forall z \in \mathbb{D} : |f(z) + f(-z)| \le 2|z|^2.$$

- (5) Soit h une fonction holomorphe sur \mathbb{D} vérifiant $\lim_{|z|\to 1} h(z) = 0$. En utilisant le principe du maximum, montrer que h = 0.
- (6) Dans cette question, on suppose qu'il existe un point $a \in \mathbb{D} \setminus \{0\}$ tel que $|f(a) + f(-a)| = 2|a|^2$.
 - (a) Justifier l'existence d'une constante λ de module 1 telle que $g(z) \equiv \lambda z$.
 - (b) Montrer à l'aide de (2) qu'il existe une fonction $h: \mathbb{D} \to \mathbb{C}$ holomorphe et impaire telle que

$$\forall z \in \mathbb{D} : f(z) = \lambda z^2 + h(z).$$

- (c) Montrer qu'on a $|\lambda z^2 + h(z)|^2 \le 1$ et $|\lambda z^2 h(z)|^2 \le 1$ pour tout $z \in \mathbb{D}$, et en déduire l'inégalité $|h(z)|^2 \le 1 |z|^4$. (d) Montrer qu'on a $f(z) = \lambda z^2$ pour tout $z \in \mathbb{D}$.

Exercice 5. Soient f et g deux fonctions entières. On suppose qu'on a $|f(z)| \leq |g(z)|$ pour tout $z \in \mathbb{C}$. Montrer qu'il existe une constante c telle que f = cg.

Exercice 6. Déterminer toutes les fonctions entières f vérifiant

$$\forall n \in \mathbb{N}^* : f'(1/n) = 1/n^2.$$