Université d'Artois Faculté des sciences Jean Perrin Licence de Physique-Chimie Module *MAT3*

Examen du 17 Juin 2011

Durée: 2h

Questions de cours.

- (1) Déterminer les primitives de la fonction $f(x) = (2x + 3)e^x$.
- (2) Exprimer $\cos(2t)$ en fonction de $\cos^2 t$, puis calculer l'intégrale $\int_0^\pi \cos^2 t \, dt$.
- (3) Calculer l'intégrale $I = \int_{]0,1[\times]0,1[} \frac{dxdy}{x+y}$.
- (4) Soit $\Delta = \{(x,y) \in \mathbb{R}^2; \ x > 0, \ y > 0, \ x^2 + y^2 < 1\}$. Dessiner Δ , puis calculer l'intégrale $I = \int_{\Delta} (x^2 + y^2)^3 dx dy$ en intégrant en coordonnées polaires.
- (5) Énoncer la formule de changement de variables en coordonnées sphériques, puis utiliser cette formule pour calculer le volume de la boule

$$B = \{(x, y, z) \in \mathbb{R}^3; \ x^2 + y^2 + z^2 \le 1\}.$$

- (6) Soit $A = \{(x, y) \in \mathbb{R}^2; \ 0 \le x \le 2 \text{ et } 0 \le y \le x^2\}$. Dessiner A et déterminer les coordonnées de son centre de gravité.
- (7) Soit $f:[0,1] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Montrer que la longueur du graphe de f est égale à $\int_0^1 \sqrt{1+f'(t)^2} dt$.
- (8) Soit $\gamma:[0,1]\to\mathbb{R}^2$ le chemin défini par $\gamma(t)=(t^2,t^3)$. Calculer l'intégrale curviligne $\int_{\mathbb{R}^3} 3xdy + 2ydx$.
- (9) Énoncer la formule de Green-Riemann.
- (10) Soit $\Gamma \subset \mathbb{R}^2$ une courbe fermée régulière entourant un domaine Ω . Montrer que l'aire de Ω est égale à $\frac{1}{2} \int_{\Gamma} x dy y dx$.

Exercice. Pour s > 0, on pose

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} \, dx \,.$$

- (1) Dans cette question, on note \mathcal{D} le domaine $]0, \infty[\times]0, \infty[\subset \mathbb{R}^2$.
 - (a) Soit $\Phi: \mathcal{D} \to \mathcal{D}$ l'application définie par $\Phi(u, v) = (\frac{uv}{1+u}, \frac{v}{1+u})$. On note $J_{\Phi}(u, v)$ le déterminant Jacobien de Φ en un point $(u, v) \in \mathcal{D}$. Montrer qu'on a $J_{\Phi}(u,v) = \frac{v}{(1+u)^2}$
 - (b) En utilisant le changement de variables $(x,y)=(\frac{uv}{1+u},\frac{v}{1+u})$ et le théorème de Fubini, montrer que pour tout s > 0, on a

$$\int_{\mathcal{D}} \left(\frac{x}{y}\right)^s e^{-(x+y)} \frac{dxdy}{x} = \int_0^\infty \frac{du}{u^{1-s}(1+u)}.$$

(2) Déduire de (1) que pour tout $s \in]0,1[$, on a

$$\Gamma(s)\Gamma(1-s) = \int_0^\infty \frac{du}{u^{1-s}(1+u)} \cdot$$

- (3) Calculer l'intégrale $\int_0^\infty \frac{du}{\sqrt{u(1+u)}}$ à l'aide du changement de variable $x=\sqrt{u},$ et en déduire la valeur de $\Gamma(1/2)$ en utilisant (2). (4) Calculer l'intégrale $\int_0^\infty e^{-t^2} dt$ en posant $x = t^2$ et en utilisant (3).