Université d'Artois Faculté des sciences Jean Perrin Licence de Mathématiques Module Calcul Différentiel 1

Examen du 3 Juin 2014

Durée: 4h

Questions de cours.

- (1) Soit E un espace de Banach. Montrer que si $L \in \mathcal{L}(E)$ et si $\rho > ||L||$, alors la série $\sum_{k\geq 0} \rho^{-k} L^k$ converge dans $\mathcal{L}(E)$.
- (2) Soient E et F deux espaces vectoriels normés. Montrer que l'application $\Phi: \mathcal{L}(E,F) \times E \to F$ définie par $\Phi(L,x) = L(x)$ est différentiable en tout point, et déterminer sa différentielle.
- (3) Soit $\alpha \in]0, \frac{1}{2}[$, et soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f_{\alpha}(0,0) = 0$ et $f(x,y) = \frac{xy}{(x^2+y^2)^{\alpha}}$ si $(x,y) \neq (0,0)$. Montrer que f est de classe \mathcal{C}^1 .
- (4) Soit $\Phi: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 , et soient a,b,c trois fonctions de classe \mathcal{C}^1 sur \mathbb{R} . En considérant la fonction de 3 variables $(u,v,w) \mapsto \int_u^v \Phi(w,t) dt$, montrer que la fonction f définie par $f(x) = \int_{a(x)}^{b(x)} \Phi(c(x),t) dt$ est de classe \mathcal{C}^1 sur \mathbb{R} , et donner une formule pour sa dérivée.
- (5) Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe \mathcal{C}^1 . On suppose qu'il existe une constante M telle que

$$\forall u \in \mathbb{R}^n \ \forall j \in \{1, \dots, n\} : |\partial_j f(u)| \le M.$$

En utilisant le théorème fondamental de l'analyse, montrer que pour tout $h = (h_1, \dots, h_n) \in \mathbb{R}^n$, on a

$$|f(h) - f(0)| \le M \times \sum_{j=1}^{n} |h_j|.$$

(6) Soit $(c_n)_{n\in\mathbb{N}}$ une suite bornée de nombres complexes. Soit également $\Omega = [0, \infty[\times\mathbb{R} \subset \mathbb{R}^2 \text{ et soit } f:\Omega \to \mathbb{C} \text{ définie par}]$

$$f(t,x) = \sum_{n=0}^{+\infty} c_n e^{-n^2 t} e^{inx}$$
.

Justifier la définition, puis montrer que f est de classe \mathcal{C}^2 sur Ω et vérifie l'équation aux dérivées partielles

$$\frac{\partial f}{\partial t} - \frac{\partial^2 f}{\partial x^2} = 0.$$

- (7) Sot $\gamma : \mathbb{R} \to \mathbb{R}^2$ une fonction de classe \mathcal{C}^1 . On suppose que pour tout $t \in \mathbb{R}$, les vecteurs $\gamma(t)$ et $\gamma'(t)$ sont linéairement indépendants. Soit également $c : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que $c(s) \neq 0$ et $c'(s) \neq 0$ pour tout $s \in \mathbb{R}$. Montrer que la fonction $f : \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(s,t) = c(s) \gamma(t)$ est un difféomorphisme local en tout point.
- (8) Soit F un espace vectoriel normé, et soit $\varphi:[0,1]\to F$ de classe \mathcal{C}^2 . Soit également $\alpha>0$. On suppose qu'on a $\varphi'(0)=0$ et $\|\varphi''(t)\|\leq t^{\alpha}$ pour tout $t\in[0,1]$. Établir l'inégalité

$$\|\varphi(1) - \varphi(0)\| \le \frac{1}{(\alpha+1)(\alpha+2)}$$

(9) Déterminer les extrema locaux de la fonction $f:\mathbb{R}^3 \to \mathbb{R}$ définie par

$$f(x, y, z) = x^3 - 2x^2 + 2y^2 + z^2 + x - 4y - 6z + 11.$$

(10) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = \log(e^x + e^y)$. Montrer que f est convexe.

Exercice 1. Dans tout l'exercice, la lettre Ω désigne un ouvert de \mathbb{R}^n . Si $f \in \mathcal{C}^2(\Omega)$, on pose

$$\Delta f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_j^2} \cdot$$

On dit qu'une fonction $f \in \mathcal{C}^2(\Omega)$ est harmonique sur Ω si elle vérifie $\Delta f = 0$.

- (1) Déterminer toutes les fonctions harmoniques sur \mathbb{R} .
- (2) Montrer que la fonction $(x, y) \mapsto \log(x^2 + y^2)$ est harmonique sur $\mathbb{R}^2 \setminus \{(0, 0)\}$.
- (3) Dans cette question, on prend $\Omega = \mathbb{R}^n \setminus \{0\}$. Soit $u : \Omega \to \mathbb{R}$ la fonction définie par u(x) = ||x||, où $||\cdot||$ est la norme euclidienne sur \mathbb{R}^n .
 - (a) Justifier que u est de classe C^2 sur Ω .
 - (b) Montrer que pour $x = (x_1, \ldots, x_n) \in \Omega$ et $j \in \{1, \ldots, n\}$, on a

$$\frac{\partial^2 u}{\partial x_j^2}(x) = \frac{\|x\|^2 - x_j^2}{\|x\|^3} \, \cdot$$

- (c) Exprimer $\Delta u(x)$ en fonction de ||x||.
- (4) Dans cette question, Ω est quelconque et on note toujours $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^n . Montrer que si $u:\Omega\to\mathbb{R}$ est une fonction de classe \mathcal{C}^2 et si $\varphi:I\to\mathbb{R}$ est de classe \mathcal{C}^2 sur un ouvert $I\subset\mathbb{R}$ contenant $u(\Omega)$, alors

$$\forall x \in \Omega : \Delta(\varphi \circ u)(x) = \varphi''(u(x)) \|\nabla u(x)\|^2 + \varphi'(u(x)) \Delta u(x).$$

(On rappelle que la notation $\nabla u(x)$ désigne le gradient de la fonction u au point x).

(5) Dans cette question, on prend à nouveau $\Omega = \mathbb{R}^n \setminus \{0\}$. Soit $\varphi :]0, \infty[\to \mathbb{R}$ une fonction de classe \mathcal{C}^2 , et soit $f : \Omega \to \mathbb{R}$ définie par $f(x) = \varphi(||x||)$. Montrer que si $x \in \mathbb{R}^n \setminus \{0\}$ et si on pose r = ||x||, alors

$$\Delta f(x) = \varphi''(r) + \frac{n-1}{r} \varphi'(r).$$

(6) On prend toujours $\Omega = \mathbb{R}^n \setminus \{0\}$. On dit qu'une fonction $f : \Omega \to \mathbb{R}$ est **radiale** si f(x) ne dépend que de ||x||. En utilisant (4), déterminer toutes les fonctions harmoniques radiales sur Ω .

Exercice 2. Dans tout l'exercice, $\alpha_1, \ldots, \alpha_n$ sont des nombres réels strictement positifs tels que $\sum_{i=1}^{n} \alpha_i = 1$. On se donne aussi $p \ge 1$.

(1) On pose

$$\Sigma = \left\{ x = (x_1, \dots, x_n) \in \mathbb{R}^n; \ x_1 \ge 0, \dots, x_n \ge 0 \text{ et } \sum_{i=1}^n x_i^p = 1 \right\}.$$

(a) Justifier l'existence de

$$M = \max_{x \in \Sigma} \prod_{i=1}^{n} x_i^{\alpha_i} \,.$$

(b) Soit $x = (x_1, ..., x_n)$ un point de Σ tel que $\prod_{i=1}^n x_i^{\alpha_i} = M$. Montrer que les x_i sont tous strictement positifs, puis montrer qu'il existe un nombre réel μ tel que

$$\forall j \in \{1, \dots, n\} : \alpha_j M = \mu x_j^p.$$

- (c) En déduire que $x_j = \alpha_j^{1/p}$ pour tout $j \in \{1, ..., n\}$, et déterminer la valeur de M (en fonction des α_i).
- (2) On note $\|\cdot\|_p$ la norme sur \mathbb{R}^n définie par $\|u\|_p = (\sum_{i=1}^n |u_i|^p)^{1/p}$. Montrer que pour tout $u = (u_1, \dots, u_n) \in \mathbb{R}^n$, on a

$$\prod_{i=1}^{n} |u_i|^{\alpha_i} \le \left(\prod_{i=1}^{n} \alpha_i^{\alpha_i}\right)^{1/p} \|u\|_p.$$