Université d'Artois Faculté des sciences Jean Perrin Licence de Mathématiques Module Calcul Différentiel 1

DS du 29 Octobre 2012

Durée: 3h

Questions de cours.

- (1) Soit E un espace de Banach, et soit $A : \mathbb{R} \to \mathcal{L}(E)$ une fonction de classe \mathcal{C}^1 . Soit également $(c_n)_{n\geq 1}$ une suite bornée de nombres réels.
 - (a) Pour $n \in \mathbb{N}^*$ on pose $A_n(t) = A(t)^n$. Montrer par récurrence que A_n est de classe C^1 et qu'on a $||A'_n(t)|| \le n ||A(t)||^{n-1}|| ||A'(t)||$.
 - (b) On suppose qu'on a ||A(t)|| < 1 pour tout $t \in \mathbb{R}$. Montrer que $\varphi(t) = \sum_{1}^{\infty} c_n A(t)^n$ est bien défini pour tout $t \in \mathbb{R}$, et que la fonction φ est de classe \mathcal{C}^1 sur \mathbb{R} .
- (2) Soit $\varphi : \mathbb{R} \to F$ une fonction de classe \mathcal{C}^{∞} , où F est un espace de Banach. On suppose qu'il existe une constante C et une fonction continue $\alpha : \mathbb{R} \to \mathbb{R}_+$ telles que $\|\varphi^{(k)}(t)\| \leq C^k k! \alpha(t)$ pour tout $k \in \mathbb{N}$ et pour tout t.
 - (a) Montrer que pour tout $x \in \mathbb{R}$ et pour tout $r \in \mathbb{N}$, on a

$$\left\| \varphi(x) - \sum_{n=0}^{r} \frac{x^n}{n!} \, \varphi^{(n)}(0) \right\| \le (r+1) \, C^{r+1} |x|^{r+1} \int_0^1 (1-s)^r \, |\alpha(sx)| \, ds \, .$$

(b) Montrer que pour tout $x \in]-\frac{1}{C}, \frac{1}{C}[$, on peut écrire

$$\varphi(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \, \varphi^{(n)}(0) \,,$$

où la série converge dans F.

- (3) Soient E et F deux evn, et soit $B: E \times E \to F$ bilinéaire continue. Montrer que pour tout $\alpha > \frac{1}{2}$, la fonction $f: E \to \mathbb{R}$ définie par $f(x) = \|B(x,x)\|^{\alpha}$ est différentiable en 0, avec Df(0) = 0.
- (4) On note $\mathcal{C}([0,1])$ l'espace des fonctions continues sur [0,1] (à valeurs réelles), et on munit $\mathcal{C}([0,1])$ de la norme $\|\cdot\|_{\infty}$. Soient $a,b,c\in\mathcal{C}([0,1])$ et soit $f:\mathcal{C}([0,1])\to\mathcal{C}([0,1])$ l'application définie par $f(u)=au^2+bu+c$.
 - (a) Montrer que f est différentiable en tout point et déterminer sa différentielle.
 - (b) Montrer que f est de classe \mathcal{C}^1 .

- (5) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction continue. On suppose que $\partial_2 f(t, y)$ existe en tout point $(t, y) \in \mathbb{R}^2$ et que la fonction $\partial_2 f$ est continue sur \mathbb{R}^2 .
 - (a) On définit $F: \mathbb{R}^3 \to \mathbb{R}$ par $F(u, v, w) = \int_u^v f(t, w) dt$. Déterminer les dérivées partielles de la fonction F.
 - (b) Soient $a, b, c : \mathbb{R} \to \mathbb{R}$ trois fonctions de classe \mathcal{C}^1 , et soit $g : \mathbb{R} \to \mathbb{R}$ la fonction définie par $g(x) = \int_{a(x)}^{b(x)} f(t, c(x)) dt$. Montrer que g est de classe \mathcal{C}^1 et donner une formule pour sa dérivée.

Exercice 1. Soient F un espace de Banach et soit $\varphi : [0, \infty[\to F \text{ une fonction de classe } \mathcal{C}^1$. On suppose qu'il existe une constante k telle que $\|\varphi'(t)\| \le k \|\varphi(t)\|$ pour tout $t \ge 0$.

- (1) On pose $a = \|\varphi(0)\|$ et $u(t) = \|\varphi(t)\|$. Montrer qu'on a $u(t) \le a + k \int_0^t u(s) \, ds$ pour tout $t \ge 0$.
- (2) On pose maintenant $v(t) = a + k \int_0^t u(s) ds$. Montrer que la fonction $t \mapsto e^{-kt}v(t)$ est décroissante sur $[0, \infty[$.
- (3) Montrer que pour tout $t \ge 0$, on a $\|\varphi(t)\| \le \|\varphi(0)\| e^{kt}$.

Exercice 2. Soient $p, q \in \mathbb{N}^*$ et soit $f : \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par f(0,0) = 0 et $f(x,y) = x^p y^q \sin\left(\frac{1}{x^2 + y^2}\right) \sin(x,y) \neq (0,0)$.

- (1) Montrer que f possède des dérivées partielles en (0,0), puis que la fonction f est différentiable en (0,0).
- (2) Justifier que f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$, et calculer ses dérivées partielles en tout point $(x,y) \neq (0,0)$.
- (3) Montrer que si $p+q \leq 3$, alors $\frac{\partial f}{\partial x}(x,x)$ n'a pas de limite quand $x \to 0^+$.
- (4) Déterminer pour quelles valeurs de p et q la fonction f est de classe C^1 sur \mathbb{R}^2 .

Exercice 3. Le but de l'exercice est de déterminer toutes les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ différentiables sur \mathbb{R}^2 et vérifiant l'équation aux dérivées partielles suivante :

(E)
$$x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = (x^4 + y^4)^{1/2}.$$

- (1) Vérifier que pour une constante C bien choisie, la fonction f_0 définie par $f_0(x,y) = C(x^4 + y^4)^{1/2}$ est solution de (E).
- (2) Soit $g: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable vérifiant

$$\forall (x,y) \in \mathbb{R}^2 : x \frac{\partial g}{\partial x}(x,y) + y \frac{\partial g}{\partial y}(x,y) = 0.$$

(a) Montrer que pour tout $(u, v) \in \mathbb{R}^2$ fixé, la fonction $t \mapsto g(tu, tv)$ est constante sur $]0, \infty[$.

- (b) Montrer que g est constante.
- (3) Déterminer toutes les solutions de (E).

Exercice 4. (Bonus)

On note $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^n . Soit $\varphi:]0, \infty[\to \mathbb{R}$ dérivable et soit $V: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n$ définie par

$$V(x) = \varphi(\|x\|) \, \frac{x}{\|x\|} \, \cdot$$

- (1) Pourquoi V est-elle différentiable?
- (2) On écrit $V(x) = (v_1(x), \dots, v_n(x))$ et on pose $\nabla \cdot V = \sum_{j=1}^n \frac{\partial v_j}{\partial x_j}$. Montrer que si $x \in \mathbb{R}^n \setminus \{0\}$ et si on pose r = ||x||, alors

$$\nabla \cdot V(x) = \varphi'(r) + \frac{n-1}{r} \varphi(r)$$
.

(3) Pour quelles fonctions φ a-t-on $\nabla \cdot V = 0$?