Université d'Artois Faculté des sciences Jean Perrin Licence de Mathématiques Module Analyse 2

Examen du 17 Juin 2016

Durée: 2h

Exercice 1. Déterminer les primitives de $f(x) = \frac{1}{(x-1)(x^2+2x+3)}$ sur $]1, \infty[$.

Exercice 2. Soient a, b > 0. Calculer $I(x) = \int_0^x e^{at} \cos(bt) dt$ pour tout $x \in \mathbb{R}$, de deux façons différentes :

- (i) en effectuant 2 intégrations par parties;
- (ii) en écrivant que $\cos(bt)$ est la partie réelle de e^{ibt} .

Exercice 3. Calculer $I = \int_0^{\pi/2} \frac{dt}{2+\cos t} dt$ en posant $x = \tan(\frac{t}{2})$, et $J = \int_1^8 \frac{dt}{1+t^{1/3}}$ en posant $x = t^{1/3}$.

Exercice 4. Soit $\varepsilon > 0$, et soit $f : [0, \varepsilon] \to \mathbb{C}$ une fonction de classe \mathcal{C}^3 . On suppose qu'on a f'(0) = f''(0) = 0 et $|f'''(t)| \le \sqrt{t}$ pour tout $t \in [0, \varepsilon]$. En utilisant la formule de Taylor, montrer que $|f(\varepsilon) - f(0)| \le \frac{8}{105} \varepsilon^{7/2}$.

Exercice 5. Pour $n \in \mathbb{N}^*$, on pose $u_n = \left(\prod_{k=1}^n k^k\right)^{\frac{1}{n^2}}$.

- (1) Vérifier que $\ln(u_n) = \frac{1}{n} \sum_{k=1}^n \frac{k}{n} \ln\left(\frac{k}{n}\right) + \frac{1}{2} \left(1 + \frac{1}{n}\right) \ln(n)$.
- (2) En déduire la limite de $\ln(u_n) \frac{1}{2}\ln(n)$ quand $n \to \infty$.
- (3) Conclure qu'il existe une constante C (à déterminer) telle que

$$u_n \sim C\sqrt{n}$$
 quand $n \to \infty$.

Exercice 6. Montrer que la fonction f définie par $f(t) = \ln(\ln t)$ est concave sur $[1, \infty[$, et en déduire que pour tous x, y > 1, on a

$$\ln\left(\frac{x+y}{2}\right) \ge \sqrt{\ln(x)\ln(y)}.$$