Feuille d'exercices nº 4

Exercice 1. Donner un exemple d'un ensemble $A \subseteq \mathbb{R}$ qui ne soit ni ouvert ni fermé.

Exercice 2. Soit E un espace métrique, et soit $M \subseteq E$. On dit qu'un point $a \in M$ est un **point isolé** de M s'il existe un voisinage V de a dans E tel que $V \cap M = \{a\}$. On note Isol(M) l'ensemble des points isolés de M. Déterminer Isol(M) dans les cas suivants.

- (i) $E = \mathbb{R}$ et $M = \mathbb{N}$.
- (ii) $E = \mathbb{R} \text{ et } M = \{0\} \cup \{\frac{1}{n}; n \in \mathbb{N}^*\}.$
- (iii) $E = \mathbb{R}$ et M est un intervalle non trivial.
- (iv) $E = \mathbb{C}$ et M est ouvert.

Exercice 3. Soit E un espace métrique, et soit $M \subseteq E$. On dit qu'un point $a \in E$ est un **point d'accumulation** de M si tout voisinage V de a dans E contient au moins un point différent de a. On note M' l'ensemble des points d'accumulation de M.

- (1) Déterminer M' dans les cas suivants :
 - (i) $E = \mathbb{R} \text{ et } M =]0,1[$.
 - (ii) $E = \mathbb{R}$ et $M = \{\frac{1}{n}; n \in \mathbb{N}^*\}$.
 - (ii) $E = \mathbb{R}$ et $M = \mathbb{Q} \cap [0, 1]$.
 - (iv) $E = \mathbb{C}$ et $M = \{z \in \mathbb{C}; |z| < 1\}.$
- (2) Avec les notations de l'Exercice 2, exprimer Isol(M) à l'aide de M et de M'.
- (3) Montrer que M' est toujours un fermé de E.
- (4) Montrer qu'un point $a \in E$ est un point d'accumulation de M si et seulement si tout voisinage V de a contient une infinité de points de M.

Exercice 4. Soit E un espace métrique, et soit $M \subseteq E$. Montrer que pour un point $a \in E$, les choses suivantes sont équivalentes :

- (i) a est un point d'accumulation de M (cf l'Exercice 3);
- (ii) il existe une suite (u_k) de points de M deux à deux distincts telle que $u_k \to a$;
- (iii) il existe une suite (u_k) de points de M deux à deux distincts et différents de a telle que $u_k \to a$;
- (iv) il existe une suite de points de M différents de a telle que $u_k \to a$.

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$. On pose $Z(f) := \{x \in \mathbb{R}; f(x) = 0\}$.

- (1) Soit $a \in \mathbb{R}$. On suppose que a est un point d'accumulation de Z(f) (cf l'Exercice 3), et que f est dérivable en a. Montrer que f'(a) = 0.
- (2) On suppose que f est de classe \mathcal{C}^{∞} . Montrer que si $a \in \mathbb{R}$ est un point d'accumulation de Z(f), alors $\forall k \in \mathbb{N} : f^{(k)}(a) = 0$.

Exercice 6. Soit (E, d) un espace métrique. Montrer que tout ouvert $O \subseteq E$ est réunion dénombrable de fermés, *i.e.* il existe une suite de fermés $(F_n)_{n\in\mathbb{N}}$ telle que $O = \bigcup_{n\in\mathbb{N}} F_n$. (Commencer par observer qu'un point $x \in E$ appartient à O si et seulement si $\operatorname{dist}(x, E \setminus O) > 0$.) En déduire que tout fermé $F \subseteq E$ est intersection dénombrable d'ouverts.

Exercice 7. Soient E et F deux espaces métriques. Montrer que si $f: E \to F$ est une application continue, alors le graphe de f est une partie fermé de $E \times F$. La réciproque est-elle vraie?

Exercice 8. Soit E un espace vectoriel normé, et soient $A, B \subseteq E$. On pose $A + B := \{u + v; u \in A, v \in B\}$. Montrer que si A ou B est ouvert, alors A + B aussi.

Exercice 9. Soit $O := \{(x, y, z) \in \mathbb{R}^3; |x^3y - z| < 6 \text{ et } e^{xz} < z^7 + y^8\}$. Montrer que O est un ouvert de \mathbb{R}^3 .

Exercice 10. Soit $C := \{(x,y) \in \mathbb{R}^2; \ x > 0, y > 0 \text{ et } y = 1/x\}$. Montrer que C est un fermé de \mathbb{R}^2 . (Commencer par ré-écrire C de façon un peu différente.)

Exercice 11. Montrer que l'ensemble des matrices symétriques, l'ensemble des matrices de trace nulle et l'ensemble des matrices nilpotentes sont des fermé de $M_N(\mathbb{R})$.

Exercice 12. Montrer que $GL_N(\mathbb{K})$ est un ouvert de $M_N(\mathbb{K})$.

Exercice 13. Soit E un espace vectoriel normé, et soit $\Phi: E \to \mathbb{K}$ une forme linéaire. Montrer que Φ est continue si et seulement si $\ker(\Phi)$ est fermé dans E.

Exercice 14. On note $c_0(\mathbb{N})$ l'ensemble de toutes les suites $u = (u(i))_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ tendant vers 0. Montrer que $c_0(\mathbb{N})$ est fermé dans $\ell^{\infty}(\mathbb{N})$.

Exercice 15. On note $C_b(\mathbb{R})$ l'ensemble de toutes les fonctions continues bornées $f: \mathbb{R} \to \mathbb{K}$, et $C_0(\mathbb{R})$ l'ensemble de toutes les fonctions continues $f: \mathbb{R} \to \mathbb{K}$ tendant vers 0 en $\pm \infty$. Montrer que $C_b(\mathbb{R})$ et $C_0(\mathbb{R})$ sont fermés dans $\ell^{\infty}(\mathbb{R})$.

Exercice 16. Soient E et F deux espaces métriques, et soit $f: E \to F$.

- (1) On suppose qu'il existe une famille $(O_i)_{i\in I}$ d'ouverts de E telle que : $f_{|O_i|}$ est continue pour tout $i \in I$ et $\bigcup_{i\in I} O_i = E$. Montrer que f est continue.
- (2) On suppose qu'il existe des fermés $C_1, \ldots, C_N \subset E$ tels que : $f_{|C_i}$ est continue pour tout $i \in [1, N]$ et $C_1 \cup \cdots \cup C_N = E$. Montrer que f est continue.
- (3) On suppose qu'il existe $A, B \subseteq E$ tels que $f_{|A}$ et $f_{|B}$ sont continues et $A \cup B = E$. Peut-on conclure que f est continue?

Exercice 17. Soient E et F deux espaces métriques, et soit $f: E \to F$. Soit également $A \subseteq E$.

- (1) Quelle implication y a-t-il entre les deux assertions "f est continue en tout point de A" et " $f_{|A}$ est continue"?
- (2) Y a-t-il équivalence?
- (3) Que peut-on dire si A est ouvert dans E?

Exercice 18. Soit (E, d) un espace métrique. On dit qu'une fonction $f : E \to \mathbb{R}$ est semi-continue inférieurement si, pour tout $\alpha \in \mathbb{R}$, l'ensemble $\{x \in E; f(x) \leq \alpha\}$ est fermé dans E. On écrira "sci" au lieu de "semi-continue inférieurement".

- (1) Montrer que toute fonction continue est sci.
- (2) Montrer que si O est un ouvert de E, alors sa fonction indicatrice est sci.
- (3) Soit $f: E \to \mathbb{R}$. On suppose qu'il existe une suite croissante de fonctions continues $(f_n)_{n\in\mathbb{N}}$ telle que $\forall x\in E: f_n(x)\to f(x)$. Montrer que f est sci.
- (4) Soit $f: E \to \mathbb{R}$ une fonction sci. On suppose de plus que f est minorée : il existe une constante $c \in \mathbb{R}$ telle que $\forall u \in E : f(u) \ge c$.
 - (a) Pour $n \in \mathbb{N}$, on définit une fonction $f_n : E \to \mathbb{R}$ par la formule $f_n(x) := \inf \{ f(y) + n d(x, y); y \in E \}.$

Justifier la définition, puis montrer que la fonction f_n est n-lipschitzienne (et donc continue).

- (b) Montrer que la suite de fonctions (f_n) est croissante, et qu'on a $f_n(x) \le f(x)$ pour tout n et pour tout $x \in E$.
- (c) Soit $x \in E$, et soit $\varepsilon > 0$. Justifier l'existence d'un r > 0 tel que $\forall y \in B(x,r)$: $f(y) > f(x) \varepsilon$, puis montrer qu'il existe $N \in \mathbb{N}$ tel que $f_N(x) > f(x) \varepsilon$.
- (d) Montrer que $f_n(x) \to f(x)$ pour tout $x \in E$.

Exercice 19. Soit (E, d) un espace métrique. Montrer que la formule $\delta(u, v) := \min(1, d(u, v))$ définit une distance sur E topologiquement équivalente à d.

Exercice 20. Soit E un espace vectoriel normé, $E \neq \{0\}$. Montrer qu'il existe sur E une distance topologiquement équivalente à la distance définie par la norme de E, mais qui ne peut pas être définie par une norme.

Exercice 21. Soit E un espace vectoriel. Montrer que deux normes sur E définissent des distances topologiquement équivalentes si et seulement elles sont équivalentes en tant que normes.

Exercice 22. Soit E un espace métrique, et soit $M \subseteq E$. On note M' l'ensemble des points d'accumulation de M (cf l'Exercice 3). Montrer qu'on a $\overline{M} = M \cup M'$.

Exercice 23. Montrer que dans un espace métrique quelconque, une boule ouverte B(a,r) est toujours *contenue* dans l'intérieur de la boule fermée $\overline{B}(a,r)$, mais qu'on n'a pas forcément égalité.

Exercice 24. Soit E un espace métrique.

- (1) Si A, B sont des parties de E, quelle relation y a-t-il entre $A \cup B$ et $A \cup B$?
- (2) Si $A, B \subseteq E$, quelle relation y a-t-il entre $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$?

Exercice 25. Soit E un espace métrique, et soit $A, B \subseteq E$. Montrer que $\overline{A \cup B} = \overline{A} \cup \overline{B}$ en utilisant la "caractérisation séquentielle de l'adhérence".

Exercice 26. Soit E un espace métrique et soient $A, B \subseteq E$. On suppose que $A \cap \overline{B} = \emptyset = B \cap \overline{A}$. Montrer qu'on a $A \cup B = A \cup B$

Exercice 27. Soit E un espace métrique. Montrer que si U et V sont des ouverts de E, alors les équivalences suivantes ont lieu : $U \cap V = \emptyset \iff \overline{U} \cap V = \emptyset \iff U \cap \overline{V} = \emptyset$.

Exercice 28. Soit E un espace métrique. Montrer que pour tout ensemble $A \subseteq E$, on a $\frac{\mathring{\overline{\circ}}}{A} = \mathring{\overline{A}}$ et A = A.

Exercice 29. Soit $A :=]0,1[\ \cup\]1,2[\ \cup\ \{3\}\ \cup\ (\mathbb{Q}\ \cap\ [4,5]) \subseteq \mathbb{R}$. Montrer que les ensembles $A,\overline{A},\mathring{A},\mathring{\overline{A}},\overset{\circ}{\overline{A}},\overset{\circ}{\overline{A}}$ et $\overset{\circ}{\overline{A}}$ sont tous différents.

Exercice 30. Soit E un espace vectoriel normé. Montrer que si Z est un sous-espace vectoriel de E, alors \overline{Z} aussi.

Exercice 31. Déterminer la frontière de A dans E dans les cas suivants.

- (1) $E = \mathbb{R}$ et $A = [0, 1] \cup [2, 3]$.
- (2) $E = \mathbb{R}$ et $A = \mathbb{Q}$.
- (3) $E = \mathbb{R}$ et $A = \mathbb{Z}$.
- (4) $E = \mathbb{R}^2$ et $A =]0, \infty[\times]0, \infty[$.
- (5) $E = \mathbb{R}^2$ et $A = \{(x, y) \in \mathbb{R}^2; \ 0 < x \le 1 \text{ et } x + y \le 4\}.$
- (6) $E = \mathbb{R}^2$ et $A = \{(x, y) \in \mathbb{R}^2; y = 3x + 1\}.$

Exercice 32. Soit E un espace métrique, et soit $A \subseteq E$. Montrer qu'on a $\partial A = \emptyset$ si et seulement si A est à la fois ouvert et fermé dans E.

Exercice 33. Soit E un espace métrique. Montrer que si O_1, \ldots, O_N sont des ouverts denses de E, alors $O_1 \cap \cdots \cap O_N$ est dense dans E.

Exercice 34. Montrer que dans un espace topologique séparé, on a unicité de la limite : une suite ne peut pas converger vers 2 points différents.

Exercice 35. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de nombres réels. On suppose que $x_n \to +\infty$, et que $x_{n+1} - x_n \to 0$. Le but de l'exercice est de montrer que l'ensemble $\{e^{ix_n}; n \in \mathbb{N}\}$ est dense dans le cercle $\mathbb{T} = \{z \in \mathbb{C}; |z| = 1\}$.

- (1) Montrer que pour tous $u, v \in \mathbb{R}$, on a $|e^{iv} e^{iu}| \leq |v u|$.
- (2) Justifier que pour tout $x \ge x_0$, il existe plus grand entier n tel que $x_n \le x$. En notant n(x) cet entier, que peut-on dire de n(x) quand $x \to +\infty$?
- (3) Soit $\theta \in [0, 2\pi[$ quelconque, et soit $\varepsilon > 0$. Montrer que si $k \in \mathbb{N}$ est assez grand, alors il existe un entier n tel que $x_n \leq \theta + 2k\pi < x_{n+1}$ et $|x_{n+1} x_n| < \varepsilon$.
- (4) Démontrer le résultat annoncé.

Exercice 36. En utilisant l'Exercice 35, montrer que l'ensemble $\{e^{i \ln(n)}; n \in \mathbb{N}^*\}$ est dense dans \mathbb{T} .

Exercice 37. Soit $\alpha \in \mathbb{R}$ tel que $0 < \alpha < 1$. Montrer que l'ensemble $\{e^{in^{\alpha}}; n \in \mathbb{N}\}$ est dense dans \mathbb{T} .

Exercice 38. Montrer que $GL_N(\mathbb{K})$ est dense dans $M_N(\mathbb{K})$.

Exercice 39. Montrer que l'ensemble des matrices diagonalisables à valeurs propres simples est dense dans $M_N(\mathbb{C})$.

- Exercice 40. On note χ_A le polynôme caractéristique d'une matrice $A \in M_N(\mathbb{C})$. En utilisant l'Exercice 39, démontrer le *Théorème de Cayley-Hamilton* : $\chi_A(A) = 0$ pour toute matrice $A \in M_N(\mathbb{C})$. (Commencer par montrer que l'application $A \mapsto \chi_A(A)$ est continue de $M_N(\mathbb{C})$ dans $M_N(\mathbb{C})$.)
- **Exercice 41.** Montrer que si G est un sous-groupe de \mathbb{R} et $G \neq \mathbb{R}$, alors $\mathbb{R}\backslash G$ est dense dans \mathbb{R} .
- **Exercice 42.** Soit E un espace vectoriel normé. Montrer que si $Z \subseteq E$ est un sous-espace vectoriel de E et si $Z \neq E$, alors $E \setminus Z$ est dense dans E.
- **Exercice 43.** Soit I un intervalle de \mathbb{R} et soit $f: I \to \mathbb{R}$ une fonction dérivable. Montrer que f est strictement croissante si et seulement si (i) $f'(x) \ge 0$ pour tout $x \in I$ et (ii) l'ensemble $\{x \in I; f'(x) > 0\}$ est dense dans I.
- **Exercice 44.** Que peut-on dire d'une fonction continue $f: \mathbb{R} \to \mathbb{C}$ à la fois 1-périodique et $\sqrt{2}$ -périodique? (On pourra commencer par observer que l'ensemble $G:=\{t\in\mathbb{R};\ \forall x\in\mathbb{R}:\ f(x+t)=f(x)\}$ est un sous-groupe de \mathbb{R} .)
- Exercice 45. Soit M un espace métrique. On note $C_b(M)$ l'espace vectoriel constitué par toutes les fonctions continues bornées $f: M \to \mathbb{K}$. On fixe une fonction $\phi \in C_b(M)$, et pour toute fonction $f \in C_b(M)$, on pose $||f||_{\phi} := ||\phi f||_{\infty}$. Montrer que $||\cdot||_{\phi}$ est une norme sur $C_b(M)$ si et seulement si l'ensemble $\{x \in M; \phi(x) \neq 0\}$ est dense dans M.
- **Exercice 46.** Soit $[a,b] \subset \mathbb{R}$ un intervalle fermé borné et soit $f:[a,b] \to \mathbb{R}$ continue. On suppose qu'on a $\int_a^b f(t)t^n dt = 0$ pour tout $n \in \mathbb{N}$. Montrer que f = 0.
- **Exercice 47.** Soient E et F deux espace vectoriel normés, et soit $(T_n)_{n\in\mathbb{N}}$ une suite d'applications linéaires continues de E dans F. On suppose que la suite (T_n) est bornée dans $\mathcal{L}(E,F)$, et qu'il existe un ensemble dense $D\subseteq E$ tel que $T_n(z)\to 0$ pour tout $z\in D$. Montrer que $T_n(u)\to 0$ pour tout $u\in E$.
- **Exercice 48.** On note $c_{00}(\mathbb{N})$ l'ensemble de toutes les suites $u = (u(i))_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ nulles à partir d'un certain rang. Montrer que $c_{00}(\mathbb{N})$ est un espace vectoriel, et que $c_{00}(\mathbb{N})$ est dense à la fois dans $(c_0(\mathbb{N}), \|\cdot\|_{\infty})$ et dans $(\ell^1(\mathbb{N}), \|\cdot\|_1)$.
- **Exercice 49.** Une fonction $f: \mathbb{R} \to \mathbb{K}$ est dite à support borné s'il existe un intervalle borné I telle que $f(x) \equiv 0$ en dehors de I. On note $C_{00}(\mathbb{R})$ l'ensemble de toutes les fonctions continues $f: \mathbb{R} \to \mathbb{K}$ à support borné. Montrer que $C_{00}(\mathbb{R})$ est un sousespace vectoriel de $C_0(\mathbb{R})$, et que $C_{00}(\mathbb{R})$ est dense dans $(C_0(\mathbb{R}), \|\cdot\|_{\infty})$.

Exercice 50. On dit qu'un espace métrique E est **séparable** s'il existe un ensemble $D \subseteq E$ à la fois dénombrable et dense dans E.

- (1) Montrer que \mathbb{R} est séparable.
- (2) Montrer que tout espace vectoriel normé de dimension finie est séparable.
- (3) Montrer qu'un espace métrique discret est séparable si et seulement si il est dénombrable.

Exercice 51. Soit E un espace métrique. Montrer que s'il existe $\varepsilon > 0$ et une famille non dénombrable de points $(x_i)_{i \in I} \subseteq E$ telle que $\forall i \neq j : d(x_i, x_j) \geq \varepsilon$, alors E n'est pas séparable (cf l'Exercice 50).

Exercice 52. Montrer que les espaces $(c_0(\mathbb{N}), \|\cdot\|_{\infty})$ et $(\ell^1(\mathbb{N}), \|\cdot\|_1)$ sont séparables $(cf \ l'Exercice \ 50)$.

Exercice 53. En utilisant l'Exercice 51, montrer que $\ell^{\infty}(\mathbb{N})$ n'est pas séparable. (On rappelle que $I := \mathcal{P}(\mathbb{N})$ n'est pas dénombrable.)

Exercice 54. Soit E un espace métrique et soit D une partie dense de E.

- (1) Soit $M \subseteq E$. On pose $I := \{(z, n) \in D \times \mathbb{N}^*; \ B(z, \frac{1}{n}) \cap M \neq \emptyset\}$, et pour tout $(z, n) \in I$, on choisit un point $u(z, n) \in B(z, \frac{1}{n}) \cap M$. Montrer que l'ensemble $\{u(z, n); \ (z, n) \in I\}$ est dense dans M.
- (2) Montrer que si E est séparable (cf l'Exercice 50), alors tout sous-espace métrique $M \subseteq E$ est séparable.