Feuille d'exercices nº 1

Exercice 1. Soit E un ensemble quelconque, et soit $\phi : E \to \mathbb{R}$. À quelle condition sur ϕ définit-on une distance sur E en posant $d(u,v) := |\phi(v) - \phi(u)|$?

Exercice 2. Soit E l'ensemble des stations du métro de New York. Montrer qu'on définit une distance sur E en notant d(u, v) la longueur du plus court trajet en métro pour aller de u à v (longueur mesurée en "nombre d'arrêts").

Exercice 3. Soit $\mathbf{C} := \{0,1\}^{\mathbb{N}}$, l'ensemble de toutes les suites de 0 et de 1. Montrer qu'on définit une distance sur \mathbf{C} en posant d(u,u) := 0 et, pour $u = (u_i)_{i \in \mathbb{N}}$ et $v = (v_i)_{i \in \mathbb{N}}$ différents, $d(u,v) := 2^{-i(u,v)}$, où i(u,v) est le plus petit indice i tel que $u_i \neq v_i$.

Exercice 4. Soit $\mathbb{T} := \{z \in \mathbb{C}; |z| = 1\}$ le "cercle unité" de \mathbb{C} . Montrer qu'on définit une distance sur \mathbb{T} en notant d(u, v) la longueur du plus petit arc de cercle joignant u à v (mesurée en radians).

Exercice 5. Soit $\mathbb{D} := \{z \in \mathbb{C}; |z| < 1\}$. Pour $u, v \in \mathbb{D}$, on pose

$$d(u,v) := \left| \frac{u - v}{1 - \overline{v}u} \right|.$$

Le but de l'exercice est de montrer que d est une distance sur \mathbb{D} (qu'on appelle la **distance pseudo-hyperbolique**).

- (1) Vérifier les propriétés "immédiates" dans la définition d'une distance.
- (2) Montrer que si $u, v \in \mathbb{D}$, alors

$$1 - d(u, v)^{2} = \frac{(1 - |v|^{2})(1 - |u|^{2})}{|1 - \overline{v}u|^{2}}.$$

(3) Déduire de (2) que si $u, v \in \mathbb{D}$, alors

$$d(u,v) \leqslant \frac{|u| + |v|}{1 + |u||v|} \leqslant |u| + |v|.$$

(4) Pour $w \in \mathbb{D}$, on définit $\phi_w : \mathbb{D} \to \mathbb{C}$ par

$$\phi_w(z) := \frac{z - w}{1 - \overline{w}z}$$

Montrer à l'aide de (1) que ϕ_w envoie \mathbb{D} dans \mathbb{D} ; puis montrer que ϕ_w est une isométrie pour la distance d: pour tous $u, v \in \mathbb{D}$,

$$d(u,v) = d(\phi_w(u), \phi_w(v)).$$

(5) Observer que si $z, w \in \mathbb{D}$, alors $d(z, w) = |\phi_w(z)|$; puis déduire de (3) et (4) que d vérifie l'inégalité triangulaire.

Exercice 6. Soit E un ensemble quelconque, et soit d une distance sur E. Soit également $\Phi: \mathbb{R}^+ \to \mathbb{R}$ une fonction vérifiant les propriétés suivantes :

- (i) $\Phi(0) = 0$ et $\Phi(t) > 0$ pour tout t > 0;
- (ii) Φ est croissante sur \mathbb{R}^+ ;
- (iii) $\Phi(s+t) \leq \Phi(s) + \Phi(t)$ pour tous $s, t \in \mathbb{R}^+$

Montrer qu'on définit une distance δ sur E en posant $\delta(u,v) := \Phi(d(u,v))$.

Exercice 7. Soit E un ensemble quelconque, et soit d une distance sur E. Soit également α tel que $0 < \alpha < 1$. Montrer qu'on définit une distance δ sur E en posant $\delta(u,v) := d(u,v)^{\alpha}$.

Exercice 8. Soit E un ensemble quelconque, et soit d une distance sur E. Montrer qu'on définit une distance δ sur E en posant $\delta(u,v) := \min(1,d(u,v))$.

Exercice 9. Soit d une distance sur un espace vectoriel E. Montrer que d est associée à une norme si et seulement si elle vérifie les propriétés suivantes :

- d(u+h,v+h) = d(u,v) pour tous $u,v,h \in E$ (invariance par translations);
- $d(\lambda u, \lambda v) = |\lambda| d(u, v)$ pour tous $u, v \in E$ et tout $\lambda \in \mathbb{K}$ (homogénéité).

Exercice 10. Soit E un espace vectoriel, $E \neq \{0\}$. Montrer que la distance discrète sur E n'est pas associée à une norme.

Exercice 11. Soit E un espace vectoriel normé réel dont la norme provient d'un produit scalaire. Montrer que pour tous $u, v \in E$ on a l'**identité du parallèlogramme**

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

Exercice 12. Soit E un espace vectoriel normé réel dont la norme provient d'un produit scalaire. Montrer que pour tout entier $n \ge 1$ et pour tous $x_1, \ldots x_n \in E$, on a

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left\| \sum_{i=1}^n \varepsilon_i x_i \right\|^2 = \sum_{i=1}^n \|x_i\|^2.$$

Exercice 13. Soit E un espace vectoriel normé réel dont la norme provient d'un produit scalaire. Montrer que si $u, v \in E$ vérifient ||u|| = 1 = ||v|| et $u \neq v$, alors $\left\|\frac{u+v}{2}\right\| < 1$.

Exercice 14. En utilisant l'Exercice 13, montrer que les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sur \mathbb{R}^2 ne proviennent pas de produits scalaires. Montrer de même que la norme $\|\cdot\|_{\infty}$ sur $\mathcal{C}([0,1])$ ne provient pas d'un produit scalaire.

Exercice 15. Soit I un ensemble non vide, et soit F un espace vectoriel normé. Une application $u: I \to F$ est dite $born\acute{e}e$ s'il existe une constante M telle que $\forall t \in I: \|u(t)\| \leq M$. On note $\ell^{\infty}(I, F)$ l'ensemble de toutes les applications bornées $u: I \to F$. Montrer que $\ell^{\infty}(I, F)$ est un espace vectoriel, et qu'on définit une norme sur $\ell^{\infty}(I, F)$ en posant $\|u\|_{\infty} := \sup\{\|u(t)\|; t \in I\}$.

Exercice 16. Soit $\phi:[0,1] \to \mathbb{K}$ une fonction bornée. Pour toute fonction $f \in \mathcal{C}([0,1])$, on pose $||f||_{\phi} := ||\phi f||_{\infty}$. Montrer que $||\cdot||_{\phi}$ est une norme sur $\mathcal{C}([0,1])$ si et seulement si l'ensemble $Z(\phi) := \{t \in [0,1]; \ \phi(t) = 0\}$ ne contient aucun intervalle non réduit à un point.

Exercice 17. Dessiner la boule $\overline{B}(0,1)$ dans $E := (\mathbb{R}^2, \|\cdot\|_{\infty})$. Même question avec $E := (\mathbb{R}^2, \|\cdot\|_1)$.

Exercice 18. Pour $u=(x,y)\in\mathbb{R}^2$, on pose $||u||:=|x|+|y|+\max(|x|,|y|)$. Montrer que $||\cdot||$ est une norme sur \mathbb{R}^2 , puis dessiner la boule $B:=\overline{B}(0,1)$ pour la norme $||\cdot||$. (Commencer par dessiner $B\cap\{(x,y);\ x\geqslant 0,y\geqslant 0\}$.)

Exercice 19. Soit E un espace métrique, soient $u, v \in E$ et soit r > 0.

- (1) On suppose que B(u,r) = B(v,r). Peut-on en déduire que u = v?
- (2) Même question que (1) en supposant de plus que E est un evn.

Exercice 20. Soit E un espace métrique, soient $u, v \in E$ et soient r, s > 0.

- (1) Montrer que si $B(u,r) \cap B(v,s) \neq \emptyset$, alors d(u,v) < r + s.
- (2) La réciproque de (1) est-elle vraie?

(3) La réciproque de (1) est-elle vraie si on suppose que E est un evn?

Exercice 21. Soit E un espace vectoriel. Montrer que si $(C_i)_{i \in I}$ est une famille de parties convexes de E, alors $C := \bigcap_{i \in I} C_i$ est convexe.

Exercice 22. Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est une fonction convexe si et seulement si l'ensemble $\text{Epi}(f) := \{(x,y) \in \mathbb{R}^2; y \ge f(x)\}$ est une partie convexe de \mathbb{R}^2 .

Exercice 23. Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et soit $N : E \to \mathbb{R}$. On suppose que N vérifie les propriétés suivantes :

- (i) N(0) = 0, et N(u) > 0 pour tout $u \neq 0$;
- (ii) $N(\lambda u) = |\lambda| N(u)$ pour tout $u \in E$ et pour tout $\lambda \in \mathbb{K}$;
- (iii) L'ensemble $B := \{x \in E; N(x) \le 1\}$ est une partie convexe de E.
- (1) Montrer que si $u \in E \setminus \{0\}$, alors $\frac{u}{N(u)} \in B$.
- (2) Montrer que si $u, v \in E$ sont $\neq 0$, alors il existe $\lambda \in [0, 1]$ tel que

$$\frac{u+v}{N(u)+N(v)} = (1-\lambda)\frac{u}{N(u)} + \lambda \frac{v}{N(v)}$$

(3) Montrer que N est une norme.

Exercice 24. Soit p un nombre réel ≥ 1 . En utilisant l'Exercice 23 et la convexité de la fonction $t \mapsto t^p$ sur \mathbb{R}^+ , montrer qu'on définit une norme $\|\cdot\|_p$ sur \mathbb{K}^N en posant, pour tout $u = (u_1, \ldots, u_N) \in \mathbb{K}^N$:

$$||u||_p := \left(\sum_{j=1}^N |u_j|^p\right)^{1/p}.$$

Exercice 25. Soit [a, b] un intervalle de \mathbb{R} , et soit p un nombre réel ≥ 1 . En utilisant l'Exercice 23, montrer qu'on définit une norme $\|\cdot\|_p$ sur $\mathcal{C}([a, b])$ en posant, pour toute $f \in \mathcal{C}([a, b])$:

$$||f||_p := \left(\int_a^b |f(t)|^p dt\right)^{1/p}.$$

Exercice 26. Soit $E := (\mathbb{R}^2, \|\cdot\|_{\infty})$. Déterminer $\operatorname{dist}(u, A)$ pour u := (2, 4) et $A := \{(x, y) \in E; \ x^2 + y^2 \leq 1\}$. (Commencer par dessiner quelques boules de centre u.)

Exercice 27. Soit E un espace vectoriel normé, et soit $A \subseteq E$. Montrer que A est borné \iff diam $(A) < \infty \iff A$ est contenu dans une boule.

Exercice 28. Montrer que pour tout ensemble borné (non-vide) $A \subseteq \mathbb{R}$, on a $\operatorname{diam}(A) = \sup(A) - \inf(A)$.

Exercice 29. Soit E un espace métrique, soit $a \in E$ et soit r > 0. Montrer que $\operatorname{diam}(B(a,r)) \leq 2r$, qu'on n'a pas nécessairement égalité, et qu'on a égalité si E est un espace vectoriel normé.

Exercice 30. Soit $E := (\mathbb{R}^2, \|\cdot\|_{\infty})$, et soit $f : \mathbb{R} \to E$ définie par $f(x) := (x, \sin(x))$. Montrer que f est une isométrie.

Exercice 31. Soient E et F deux espaces vectoriels normés, et soit $T: E \to F$ une application linéaire. Montrer que T est une isométrie si et seulement si ||T(u)|| = ||u|| pour tout $u \in E$.

Exercice 32. Montrer que $E := (\mathbb{R}^2, \|\cdot\|_1)$ et $F := (\mathbb{R}^2, \|\cdot\|_{\infty})$ sont isométriques. (Considérer l'application $T : \mathbb{R}^2 \to \mathbb{R}^2$ définie par T(x,y) := (x+y, x-y).)

Exercice 33. Soit (M, d) un espace métrique quelconque. Le but de l'exercice est de montrer que M est isométrique à une partie d'un espace vectoriel normé.

- (1) Soit $a \in M$. Pour $u \in M$, on note $\varphi_u : M \to \mathbb{R}$ la fonction définie par $\varphi_u(x) := d(u, x) d(x, a)$. Montrer que la fonction φ_u est bornée.
- (2) On garde les notations de (1). Montrer que si $u, v \in M$, alors $\|\varphi_v \varphi_u\|_{\infty} = d(u, v)$.
- (3) Démontrer le résultat annoncé.

Exercice 34. Montrer que $\forall u \in \mathbb{R}^N : ||u||_2 \leq ||u||_1 \leq \sqrt{N} ||u||_2$, et que la constante \sqrt{N} ne peut pas être améliorée.

Exercice 35. Soit E un espace vectoriel, et soient $\|\cdot\|$ et $\|\cdot\|'$ deux normes sur E. Montrer que si $\|\cdot\|$ et $\|\cdot\|'$ ne sont pas équivalentes, alors ou bien il existe une suite $(u_k) \subseteq E$ telle que $\|u_k\| \to 0$ et $\|u_k\|' \to \infty$, ou bien il existe une suite $(u_k) \subseteq E$ telle que $\|u_k\| \to \infty$ et $\|u_k\|' \to 0$.

Exercice 36. Soit [a,b] un segment (non trivial) de \mathbb{R} . Pour $f \in \mathcal{C}([a,b])$, on pose $||f||_1 := \int_a^b |f(t)| \, dt$. Montrer que $||\cdot||_1$ est une norme sur $\mathcal{C}([a,b])$, et qu'elle n'est pas équivalente à la norme $||\cdot||_{\infty}$. (Pour $n \in \mathbb{N}$, on pourra considérer la fonction $f_n \in \mathcal{C}([a,b])$ définie par $f_n(t) := \left(\frac{t-a}{b-a}\right)^n$.)

Exercice 37. Soit $\mathbb{K}[X]$ l'espace vectoriel constitué par tous les polynômes à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Si $P \in \mathbb{K}[X]$, on écrit $P = \sum_{i \in \mathbb{N}} c_i(P)X^i$, où tous les $c_i(P)$ sauf un nombre fini valent 0.

(1) Montrer qu'on définit deux normes $\|\,\cdot\,\|_1$ et $\|\,\cdot\,\|_\infty$ sur $\mathbb{K}[X]$ en posant

$$||P||_1 := \sum_{i \in \mathbb{N}} |c_i(P)|$$
 et $||P||_{\infty} := \max_{i \in \mathbb{N}} |c_i(P)|$.

(2) Montrer que les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ ne sont pas équivalentes. (Pour $n \in \mathbb{N}$, on pourra considérer le polynôme $P_n := \sum_{i=0}^n X^i$.)

Exercice 38. On admet que tout espace vectoriel (sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) possède une base. En s'inspirant de l'Exercice 37, montrer que sur tout espace vectoriel E de dimension infinie, on peut définir deux normes qui ne sont pas équivalentes

Exercice 39. Soit $(P_k)_{k\in\mathbb{N}}$ une suite de polynômes de degré ≤ 348974 . On suppose que $\int_{-1/10}^{1/10} |P_k(t)| dt \to 0$ quand $k \to \infty$. Montrer que $\int_{-3000}^{3000} |P_k(t)| dt \to 0$.

Exercice 40. Soit E un espace vectoriel. Montrer que deux normes sur E sont équivalentes si et seulement si les distances associées sont Lipschitz-équivalentes.