Feuille d'exercices nº 4

Exercice 1. Soient $A, B \in M_d(\mathbb{K})$. Montrer que si A et B sont semblables, alors f(A) et f(B) sont semblables pour tout polynôme $f \in \mathbb{K}[\mathbf{z}]$.

Exercice 2. Montrer que deux matrices semblables ont la même trace.

Exercice 3. Le but de l'exercice est de montrer que pour une matrice $X \in M_2(\mathbb{K})$, les choses suivantes sont équivalentes :

- (i) il existe des matrices $A, B \in M_2(\mathbb{K})$ telles que X = AB BA;
- (ii) Tr(X) = 0.
- (1) Montrer que (i) entraine (ii).
- (2) Soit $X \in M_2(\mathbb{K})$ vérifiant Tr(X) = 0.
 - (a) Montrer que si X est diagonale, alors X = 0.
 - (b) On note (e_1, e_2) la base canonique de \mathbb{K}^2 . Montrer que si X n'est pas diagonale, alors ou bien (e_1, Xe_1) est une base de \mathbb{K}^2 , ou bien (e_2, Xe_2) est une base de \mathbb{K}^2 .
 - (c) Soit $e \in \mathbb{K}^2$. On suppose que (e, Xe) est une base de \mathbb{K}^2 , et on note P la matrice de passage de (e_1, e_2) à (e, Xe). Montrer que la matrice $X' = P^{-1}XP$ a ses coefficients diagonaux égaux à 0.
 - (d) Avec les notations de (c), montrer qu'il existe des matrices A', B' telles que X' = A'B' B'A', et qu'il est même possible de prendre A' diagonale.
- (3) Montrer que (ii) entraine (i).

Exercice 4. Effectuer la division euclidienne de $A(z) := 3z^5 + 2z^4 - z^3 + 5z^2 + 4z + 6$ par $B(z) := z^2 + 2z + 2$.

Exercice 5. Soit P le polynôme défini par $P(z) := z^3 + 2z^2 + 2z - 5$. Trouver une racine "évidente" de P, puis décomposer P(z) en produits de polynômes de degré 1.

Exercice 6. Décomposer $P(z) := z^4 - 3z^3 + 7z^2 - 15z + 10$ en produit de polynômes de degré 1.

Exercice 7. Soit d un entier ≥ 1 , et soient $\lambda_0, \ldots, \lambda_d \in \mathbb{K}$ des nombres tous différents.

(1) Soit $L: \mathbb{K}_d[\mathbf{z}] \to \mathbb{K}^{d+1}$ l'application définie par

$$L(P) := {}^{t}(P(\lambda_0), \dots, P(\lambda_d)).$$

Montrer que L est linéaire et déterminer son noyau.

(2) Déduire de (1) que pour si on se donne $\alpha_0, \ldots, \alpha_d \in \mathbb{K}$, alors il existe un unique polynôme $P \in \mathbb{K}_d[\mathbf{z}]$ tel que

$$P(\lambda_i) = \alpha_i$$
 pour $i = 0, \dots, d$.

(3) Pour k = 0, ..., d, on définit $Q_k \in \mathbb{K}_d[\mathbf{z}]$ comme suit :

$$Q_k(z) := \prod_{j \neq k} \frac{z - \lambda_j}{\lambda_k - \lambda_j}$$

Montrer que le polynôme P de (2) est donné par la formule

$$P = \sum_{k=0}^{d} \alpha_k Q_k.$$

Exercice 8. Soient P_1 et P_2 deux polynômes non nuls à coefficients dans \mathbb{K} . Montrer que A et B sont premiers entre eux si et seulement si il existe deux polynômes U_1 et U_2 tels que $P_1U_1 + P_2U_2 = 1$.

Exercice 9. Montrer que les polynômes P_1 et P_2 définis par $P_1(z) := z^4 - 1$ et $P_2(z) := z^3 - 2$ sont premiers entre eux, et trouver deux polynômes U_1 et U_2 tels que $P_1U_1 + P_2U_2 = 1$, avec $\deg(U_1) < 3$ et $\deg(U_2) < 4$.

Exercice 10. Soient P_1 et P_2 deux polynômes de degré 2 de la forme $P_1(z) = z^2 + bz + c$ et $P_2(z) = z^2 + b'z + c'$. On suppose que

$$(c - c')^2 + (b - b')(bc' - b'c) \neq 0.$$

Montrer que P_1 et P_2 sont premiers entre eux, et qu'il existe un unique couple de polynômes (U_1, U_2) de degrés < 2 tel que $P_1U_1 + P_2U_2 = 1$.

Exercice 11. Soit $A \in M_d(\mathbb{R})$.

- (1) On suppose que A est semblable à une matrice diagonale dont les coefficients diagonaux valent 0 ou 1. Montrer que $A^2 = A$.
- (2) On suppose qu'on a $A^2 = A$.
 - (a) Montrer que $\mathbb{K}^d = \ker(A) \oplus \ker(A I)$.
 - (b) En déduire que A est semblable à une matrice diagonale dont les coefficients diagonaux valent 0 ou 1.

Exercice 12. Soit $A \in M_d(\mathbb{R})$. Montrer qu'on a $A^2 = I$ si et seulement si A est semblable à une matrice diagonale dont les coefficients diagonaux valent 1 ou -1.

Exercice 13. Calculer les déterminants des matrices suivantes :

$$A := \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix} , \quad B := \begin{pmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{pmatrix} \quad \text{et} \quad C := \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{pmatrix}.$$

Exercice 15. Les nombres 119, 153 et 289 sont tous divisibles par 17. Montrer, sans le calculer, que le déterminant de la matrice $\begin{pmatrix} 1 & 1 & 9 \\ 1 & 5 & 3 \\ 2 & 8 & 9 \end{pmatrix}$ est divisible par 17.

Exercice 16. Soient $a, b, c \in \mathbb{K}$. Montrer que

$$\det \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix} = (c-b)(c-a)(b-a).$$

Exercice 17. Dans cet exercice, on veut calculer, pour tous $a, b, c, d \in \mathbb{K}$, le déterminant

$$V(a, b, c, d) := \det \begin{pmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{pmatrix}$$

- (1) Combien vaut V(a, b, c, d) si a, b, c, d ne sont pas tous différents?
- (2) Soient $a, b, c \in \mathbb{K}$ tous différents.
 - (a) Montrer que V(a, b, c, z) est un polynôme en z de degré 3, et déterminer le coefficient de z^3 dans V(a, b, c, z).
 - (b) Déterminer les racines de V(a, b, c, z).
- (3) Conclure que pour tous $a, b, c, d \in \mathbb{K}$, on a

$$V(a, b, c, d) = (d - c)(d - b)(d - a)(c - b)(c - a)(b - a).$$

Exercice 18. Soient $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{C}$ tels que $\alpha_i + \beta_j \neq 0$ pour tous $i, j \in [1, 2]$. Montrer que

$$\det \left(\frac{\frac{1}{\alpha_1 + \beta_1}}{\frac{1}{\alpha_2 + \beta_1}} \cdot \frac{\frac{1}{\alpha_1 + \beta_2}}{\frac{1}{\alpha_2 + \beta_2}} \right) = \frac{(\alpha_2 - \alpha_1)(\beta_2 - \beta_1)}{(\alpha_1 + \beta_1)(\alpha_1 + \beta_2)(\alpha_2 + \beta_1)(\alpha_2 + \beta_2)} \cdot$$

Exercice 19. Soient $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \in \mathbb{C}$ tels que $\alpha_i + \beta_j \neq 0$ pour tous $i, j \in [1, 3]$. On veut trouver une formule "présentable" pour le déterminant de la matrice

$$A := \begin{pmatrix} \frac{1}{\alpha_1 + \beta_1} & \frac{1}{\alpha_1 + \beta_2} & \frac{1}{\alpha_1 + \beta_3} \\ \frac{1}{\alpha_2 + \beta_1} & \frac{1}{\alpha_2 + \beta_2} & \frac{1}{\alpha_2 + \beta_3} \\ \frac{1}{\alpha_3 + \beta_1} & \frac{1}{\alpha_3 + \beta_2} & \frac{1}{\alpha_3 + \beta_3} \end{pmatrix}.$$

(1) Montrer qu'on a

$$\det \begin{pmatrix} \frac{\alpha_3 + \beta_1}{\alpha_1 + \beta_1} & \frac{\alpha_3 + \beta_2}{\alpha_1 + \beta_2} & \frac{\alpha_3 + \beta_3}{\alpha_1 + \beta_3} \\ \frac{\alpha_3 + \beta_1}{\alpha_2 + \beta_1} & \frac{\alpha_3 + \beta_2}{\alpha_2 + \beta_2} & \frac{\alpha_3 + \beta_2}{\alpha_2 + \beta_3} \\ 1 & 1 & 1 \end{pmatrix} = \det \begin{pmatrix} \frac{\alpha_3 - \alpha_1}{\alpha_1 + \beta_1} & \frac{\alpha_3 - \alpha_1}{\alpha_1 + \beta_2} & \frac{\alpha_3 - \alpha_1}{\alpha_1 + \beta_3} \\ \frac{\alpha_3 - \alpha_2}{\alpha_2 + \beta_1} & \frac{\alpha_3 - \alpha_2}{\alpha_2 + \beta_2} & \frac{\alpha_3 - \alpha_2}{\alpha_2 + \beta_3} \\ 1 & 1 & 1 \end{pmatrix}.$$

(2) En déduire que

$$\det(A) = \frac{(\alpha_3 - \alpha_1)(\alpha_3 - \alpha_2)}{(\alpha_3 + \beta_1)(\alpha_3 + \beta_2)(\alpha_3 + \beta_3)} \det \begin{pmatrix} \frac{1}{\alpha_1 + \beta_1} & \frac{1}{\alpha_1 + \beta_2} & \frac{1}{\alpha_1 + \beta_3} \\ \frac{1}{\alpha_2 + \beta_1} & \frac{1}{\alpha_2 + \beta_2} & \frac{1}{\alpha_2 + \beta_3} \\ 1 & 1 & 1 \end{pmatrix}.$$

(3) Montrer que

$$\det\begin{pmatrix} \frac{1}{\alpha_1+\beta_1} & \frac{1}{\alpha_1+\beta_2} & \frac{1}{\alpha_1+\beta_3} \\ \frac{1}{\alpha_2+\beta_1} & \frac{1}{\alpha_2+\beta_2} & \frac{1}{\alpha_2+\beta_3} \\ 1 & 1 & 1 \end{pmatrix} = \frac{(\beta_3-\beta_1)(\beta_3-\beta_2)}{(\alpha_1+\beta_3)(\alpha_2+\beta_3)} \det\begin{pmatrix} \frac{1}{\alpha_1+\beta_1} & \frac{1}{\alpha_1+\beta_2} & \frac{1}{\alpha_1+\beta_2} \\ \frac{1}{\alpha_2+\beta_1} & \frac{1}{\alpha_2+\beta_2} & \frac{1}{\alpha_2+\beta_3} \\ 0 & 0 & 1 \end{pmatrix}.$$

(4) Conclure que det(A) est égal à

$$\frac{(\alpha_3 - \alpha_2)(\alpha_3 - \alpha_1)(\alpha_2 - \alpha_1)(\beta_3 - \beta_2)(\beta_3 - \beta_1)(\beta_2 - \beta_1)}{(\alpha_1 + \beta_1)(\alpha_1 + \beta_2)(\alpha_1 + \beta_3)(\alpha_2 + \beta_1)(\alpha_2 + \beta_2)(\alpha_3 + \beta_3)(\alpha_3 + \beta_1)(\alpha_3 + \beta_2)(\alpha_3 + \beta_3)} \cdot$$

Exercice 20. Montrer que si d est un entier impair, alors il n'existe pas de matrice $A \in M_d(\mathbb{R})$ telle que $A^2 = -I$.

Exercice 21. On note $M_d(\mathbb{Z})$ l'ensemble des matrices $A \in M_d(\mathbb{R})$ dont tous les coefficients sont des nombres entiers (positifs ou négatifs), et $M_d(\mathbb{Q})$ l'ensemble des matrices A dont les coefficients sont des nombres rationnels.

- (1) Soit $A \in M_d(\mathbb{R})$ une matrice inversible. Montrer que si $A \in M_d(\mathbb{Q})$, alors $A^{-1} \in M_d(\mathbb{Q})$.
- (2) Soit $A \in M_d(\mathbb{R})$ une matrice inversible. On suppose que $A \in M_d(\mathbb{Z})$. Montrer l'équivalence suivante :

$$A^{-1} \in M_d(\mathbb{Z}) \iff \det(A) = \pm 1.$$

Exercice 22. Soit $M = (m_{i,j}) \in M_d(\mathbb{C})$. On note \overline{M} la matrice $(\overline{m_{i,j}})$. Montrer que $\det(M\overline{M}) = |\det(M)|^2$.

Exercice 23. Soient $A, B \in M_d(\mathbb{R})$.

- (1) On suppose que AB = BA. Montrer que $A^2 + B^2 = (A + iB)(A iB)$, et en déduire que $\det(A^2 + B^2) \ge 0$.
- (2) Montrer que si on ne suppose pas que AB = BA, il est possible d'avoir $det(A^2 + B^2) < 0$.

Exercice 24. Soient p, q des entiers ≥ 1 , et soit $M \in M_{p+q}(\mathbb{K})$. On suppose que M est de la forme

$$M = \begin{pmatrix} A & C \\ 0 & D \end{pmatrix},$$

où $A \in M_p(\mathbb{K}), D \in M_q(\mathbb{K}), C \in M_{p,q}(\mathbb{K})$ et $0 \in M_{q,p}(\mathbb{K})$. Vérifier que

$$M = \begin{pmatrix} I_p & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_p & C \\ 0 & I_q \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I_q \end{pmatrix},$$

et en déduire que

$$\det(M) = \det(A)\det(D).$$

Exercice 25. Soient $A, B, C, D \in M_d(\mathbb{C})$, et soit

$$M := \begin{pmatrix} A & C \\ B & D \end{pmatrix} \in M_{2d}(\mathbb{C}).$$

Le but de l'exercice est de montrer que si BD = DB, alors

$$\det(M) = \det(AD - CB).$$

(1) On suppose que D est inversible. Trouver des matrices $U,V,W\in M_d(\mathbb{C})$ telles que

$$M = \begin{pmatrix} U & V \\ 0 & D \end{pmatrix} \begin{pmatrix} I & 0 \\ W & I \end{pmatrix},$$

et en déduire que $det(M) = det(A - CD^{-1}B) det(D)$.

- (2) Établir la formule souhaitée lorsque D est inversible et que BD = DB.
- (3) On suppose seulement que BD = DB.
 - (a) Justifier rapidement que $P(z) := \det \begin{pmatrix} A & C \\ B & D-zI \end{pmatrix} \det(A(D-zI) CB)$ est un polynôme en z.
 - (b) Montrer à l'aide de (1) qu'il existe une infinité de $z \in \mathbb{C}$ tels que P(z) = 0.
 - (c) Montrer que det(M) = det(AD BC).

Exercice 26. Soient $A, B \in M_n(\mathbb{R})$. On suppose que A et B sont semblables dans $M_d(\mathbb{C})$, autrement dit qu'il existe une matrice inversible $P \in M_d(\mathbb{C})$ telle que $B = P^{-1}AP$. Le but de l'exercice est de montrer que A et B sont semblables dans $M_d(\mathbb{R})$, autrement dit qu'il existe une matrice inversible $Q \in M_d(\mathbb{R})$ telle que $B = Q^{-1}AQ$.

- (1) Montrer que toute matrice $Z \in M_d(\mathbb{C})$ s'écrit de manière unique sous la forme Z = X + iY avec $X, Y \in M_d(\mathbb{R})$.
- (2) On écrit P = X + iY avec $X, Y \in M_d(\mathbb{R})$. Montrer que XB = AX et YB = AY.
- (3) Montrer que $f(z) := \det(X + zY)$ est un polynôme à coefficients réels, et que $f \neq 0$.
- (4) Déduire de (3) qu'il existe $\lambda \in \mathbb{R}$ tel que la matrice $Q := X + \lambda Y$ est inversible, et conclure.

Exercice 27. Soient $a, b, c \in \mathbb{K}$. Calculer le polynôme caractéristique de la matrice

$$A := \begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix},$$

et vérifier qu'on a bien $\chi_A(A) = 0$.

Exercice 28. Calculer le polynôme caractéristique de la matrice $A := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.

Exercice 29. Soient D et D' deux matrices diagonales de taille d. On note $\lambda_1, \ldots, \lambda_d$ les coefficients diagonaux de D, et $\lambda'_1, \ldots, \lambda'_d$ ceux de D'. Montrer que D et D' sont semblables si et seulement si $(\lambda'_1, \ldots, \lambda'_d)$ est une permutation de $(\lambda_1, \ldots, \lambda_d)$.

Exercice 30. Soit $A \in M_d(\mathbb{K})$. On suppose qu'il n'existe pas de polynôme non nul R tel que $\deg(R) < d$ et R(A) = 0. En utilisant une division euclidienne, montrer que le polynôme caractéristique de A est le seul polynôme P de degré d avec un coefficient devant z^d égal à 1 tel que P(A) = 0.

Exercice 31. Soient $A, B \in M_n(\mathbb{K})$. Le but de l'exercice est de montrer que AB et BA ont le même polynôme caractéristique.

- (1) Démontrer le résultat lorsque B est inversible.
- (2) Montrer que pour tout entier $n \in \mathbb{N}$ assez grand, la matrice $B \frac{1}{n}I$ est inversible.
- (3) Démontrer le résultat souhaité sans supposer que B est inversible.

Exercice 32. Soit $A \in M_d(\mathbb{K})$, avec $d \ge 2$.

- (1) On suppose qu'il existe un vecteur $e \in \mathbb{K}^d$ tel que la famille $(e, Ae, \dots, A^{d-1}e)$ soit une base de \mathbb{K}^d .
 - (a) Montrer que si $R \in \mathbb{K}[\mathbf{z}]$ est un polynôme de degré < d tel que R(A) = 0, alors R = 0.

(b) On écrit $A^d e$ dans la base $(e, Ae, \dots, A^{d-1}e)$:

$$A^d e = \sum_{k=0}^{d-1} c_k A^k e.$$

Montrer qu'on a $A^dA^ie = \sum_{k=0}^{d-1} c_k A^k A^i e$ pour $i=0,\ldots,d-1$; et en déduire que

$$A^d = \sum_{k=0}^{d-1} c_k A^k.$$

(c) En utilisant l'Exercice 30, montrer que le polynôme caractéristique de A est donné par

$$\chi_A(z) = z^d - \sum_{k=0}^{d-1} c_k z^k.$$

(2) Dans cette question on se donne $a_0, \ldots, a_{d-1} \in \mathbb{K}$ et on prend

$$A := \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 & a_0 \\ 1 & 0 & 0 & \dots & 0 & 0 & a_1 \\ 0 & 1 & 0 & \dots & 0 & 0 & a_2 \\ \vdots & \ddots & \ddots & \ddots & & \vdots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 & a_{d-2} \\ 0 & \dots & \dots & 0 & 0 & 1 & a_{d-1} \end{pmatrix}$$

Déterminer le polynôme caractéristique de A en utilisant (1).

(3) Retrouver le résultat de (2) par un calcul direct, en développant $\det(zI - A)$ par rapport à la dernière colonne.

Exercice 33. Soit $A \in M_d(\mathbb{C})$ une matrice triangulaire supérieure dont tous les coefficients diagonaux valent 0.

- (1) On note (e_1, \ldots, e_d) la base canonique de \mathbb{K}^d . Calculer $Ae_1, A^2e_2 \ldots, A^de_d$; et en déduire que $A^d = 0$.
- (2) Re-démontrer que $A^d=0$ en utilisant le Théorème de Cayley-Hamiton.

Exercice 34. On dit qu'une matrice $A \in M_d(\mathbb{K})$ est *nilpotente* s'il existe un entier n tel que $A^n = 0$. Le but de l'exercice est de montrer, de deux façons différentes, que si $A \in M_d(\mathbb{K})$ est nilpotente, alors $A^d = 0$.

- (1) Soit $A \in M_d(\mathbb{K})$ nilpotente. On note n_0 le plus petit entier n tel que $A^n = 0$.
 - (a) Soit $u \in \mathbb{K}^d$. Montrer que si $\alpha_0, \dots, \alpha_{n_0-1} \in \mathbb{K}$ sont tels que $\alpha_0 u + \alpha_1 A u + \dots + \alpha_{n_0-1} A^{n_0-1} u = 0$, alors $\alpha_0 A^{n_0-1} u = 0$.
 - (b) Justifier l'existence d'un vecteur $e \in \mathbb{K}^d$ tel que $A^{n_0-1}e \neq 0$; puis montrer que la famille $(e, Ae, \dots, A^{n_0-1}e)$ est libre.

- (c) Montrer que $n_0 \leq d$ et conclure.
- (2) Soit $A \in M_d(\mathbb{K})$ nilpotente. Montrer que $A^d = 0$ en utilisant le Théorème de Cayley-Hamilton.

Exercice 35. Montrer que si $A, B \in M_d(\mathbb{K})$ sont nilpotentes et telles que AB = BA, alors les matrices AB et A + B sont nilpotentes.

Exercice 36. Soit d un entier impair. Montrer que si $A \in M_d(\mathbb{R})$, alors A admet au moins une valeur propre réelle.

Exercice 37. Soit E un \mathbb{K} -espace vectoriel, et soit $L \in \mathcal{L}(E)$. On suppose qu'il existe $\lambda_1, \ldots, \lambda_r \in \mathbb{K}$ tels que $E = \ker(L - \lambda_1 i d_E) \oplus \cdots \ker(L - \lambda_r i d_E)$, et que $\ker(L - \lambda_k i d_E) \neq \{0\}$ pour $k = 1, \ldots, r$. Montrer que $\lambda_1, \ldots, \lambda_r$ sont les seules valeurs propres de L.

Exercice 38. Soit I un intervalle de \mathbb{R} . Pour tout $\lambda \in \mathbb{C}$, on note $e_{\lambda} : I \to \mathbb{C}$ la fonction définie par $e_{\lambda}(t) := e^{\lambda t}$. En considérant l'application linéaire $D : \mathcal{C}^{\infty}(I, \mathbb{C}) \to \mathcal{C}^{\infty}(I, \mathbb{C})$ définie par D(u) := u', montrer que si $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ sont tous différents, alors les fonctions $e_{\lambda_1}, \ldots, e_{\lambda_r}$ sont linéairement indépendantes.

Exercice 39. Dans cette exercice, on veut résoudre l'équation différentielle

(E)
$$x^{(4)}(t) = x(t)$$
.

On cherche les solutions définies sur \mathbb{R} et à valeurs complexes.

- (1) Montrer que toutes les solutions de (E) sont de classe \mathcal{C}^{∞} .
- (2) On note \mathcal{E} l'espace vectoriel $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$, et $D: \mathcal{E} \to \mathcal{E}$ l'application linéaire définie par D(x) := x'. Montrer qu'une fonction $x \in \mathcal{E}$ est solution de (E) si et seulement si $x \in \ker(D^4 id_{\mathcal{E}})$.
- (3) Pour $\lambda \in \mathbb{C}$, déterminer $\ker(D \lambda i d_{\mathcal{E}})$.
- (4) Déduire de (2) et (3) que les solutions de (E) sont les fonctions x de la forme

$$x(t) = \alpha e^t + \beta e^{-t} + \gamma e^{it} + \delta e^{-it},$$

où $\alpha, \beta, \gamma, \delta$ sont des constantes.

Exercice 40. Dans cet exercice, on considère une équation différentielle linéaire d'ordre $n \ge 1$, de la forme

(E)
$$x^{(n)}(t) = a_{n-1}x^{(n-1)}(t) + a_{n-2}x^{(n-2)}(t) + \dots + a_0x(t),$$

où $a_0, \ldots, a_{n-1} \in \mathbb{C}$. On cherche les solutions définies sur \mathbb{R} et à valeurs complexes.

(1) Montrer que toutes les solutions de (E) sont de classe \mathcal{C}^{∞} .

(2) Soit $D: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ l'application linéaire définie par D(x) := x'. Montrer qu'une fonction $x: \mathbb{R} \to \mathbb{C}$ est solution de (E) si et seulement si $x \in \ker(P(D))$, où P est le polynôme défini par

$$P(z) := z^{n} - a_{n-1}z^{n-1} - a_{n-2}z^{n-2} - \dots - a_{1}z - a_{0}.$$

(3) On suppose que le polynôme P admet n racines distinctes $r_1, \ldots, r_n \in \mathbb{C}$. Déduire de (2) que les solutions de (E) sont les fonctions x de la forme

$$x(t) = \lambda_1 e^{r_1 t} + \dots + \lambda_n e^{r_n t},$$

où $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ sont des constantes.

(4) On suppose que le polynôme admet une seule racine r, et donc que

$$P(z) = (z - r)^n.$$

(a) Soit $\phi: \mathbb{R} \to \mathbb{C}$ la fonction définie par $\phi(t) := e^{-rt}$. On définit une application linéaire $M_{\phi}: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ en posant

$$M_{\phi}(x) := \phi x$$
 pour tout $x \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$.

Montrer qu'on a

$$D \circ M_{\phi} = M_{\phi} \circ (D - r id);$$

et en déduire que

$$D^n \circ M_\phi = M_\phi \circ P(D).$$

- (b) Montrer que l'application linéaire M_{ϕ} est injective.
- (c) Déduire de (a) et (b) qu'une fonction $x : \mathbb{R} \to \mathbb{C}$ est solution de (E) si et seulement si elle est de la forme

$$x(t) = Q(t)e^{rt},$$

où Q est un polynôme de degré $\leq n-1$.

(5) Donner l'expression des solutions de (E) lorsque le polynôme P se décompose sous la forme

$$P(z) = (z - r_1)^{m_1} \cdots (z - r_k)^{m_k}.$$

Exercice 41. Soient $A, B \in M_d(\mathbb{K})$. On suppose qu'on a AB - BA = A.

- (1) Montrer que pour tout $n \in \mathbb{N}$, on a $A^n B B A^n = n A^n$.
- (2) En considérant l'application linéaire $L: M_d(\mathbb{K}) \to M_d(\mathbb{K})$ définie par L(X) := XB BX, en déduire que la matrice A est nilpotente, autrement dit qu'il existe $n \in \mathbb{N}$ tel que $A^n = 0$.

Exercice 42. Soient $A, B \in M_d(\mathbb{C})$. On suppose que A et B n'ont pas de valeur propre commune, autrement dit qu'il n'existe aucun $\lambda \in \mathbb{C}$ qui soit à la fois valeur propre de A et valeur propre de B. Le but de l'exercice est de montrer que pour toute matrice $Y \in M_d(\mathbb{C})$, l'équation AX - XB = Y admet une unique solution $X \in M_d(\mathbb{C})$.

- (1) Montrer qu'il existe des polynômes U et V tels que $U\chi_A + V\chi_B = 1$.
- (2) En déduire que la matrice $\chi_B(A)$ est inversible.
- (3) Soit $X \in M_d(\mathbb{C})$. On suppose qu'on a AX = XB. Montrer qu'on a P(A)X = XP(B) pour tout polynôme P; et en déduire à l'aide de (2) que X = 0.
- (4) Vérifier que l'application $L: M_d(\mathbb{C}) \to M_d(\mathbb{C})$ définie par L(X) := AX XB est linéaire.
- (5) Démontrer le résultat annoncé en utilisant (3) et (4).

Exercice 43. Pour toute matrice $M \in M_d(\mathbb{C})$, on note $\sigma(M)$ l'ensemble des valeurs propres de M. Le but de l'exercice est de montrer que si $A \in M_d(\mathbb{C})$ alors, pour tout polynôme $P \in \mathbb{C}[\mathbf{z}]$, on a

$$\sigma(P(A)) = P(\sigma(A)) := \{P(\lambda); \ \lambda \in \sigma(A)\}.$$

- (1) Montrer l'inclusion $P(\sigma(A)) \subset \sigma(P(A))$.
- (2) Soit $A \in M_d(\mathbb{C})$ et soit $P \in \mathbb{C}[\mathbf{z}]$ un polynôme non constant. Soit également μ une valeur propre de P(A), et soit Q le polynôme défini par $Q(z) := P(z) \mu$. On écrit

$$Q(z) = c (z - \lambda_1)^{m_1} \cdots (z - \lambda_r)^{m_r}.$$

Exprimer $P(A) - \mu I$ à l'aide de $\lambda_1, \ldots, \lambda_r, m_1, \ldots, m_r$, puis montrer qu'il existe au moins un $k \in [1, r]$ tel que $A - \lambda_k I$ n'est pas inversible.

(3) Conclure.

Exercice 44. Soit $A \in M_d(\mathbb{K})$. Montrer que si A est diagonalisable, alors f(A) est diagonalisable pour tout polynôme $f \in \mathbb{K}[\mathbf{z}]$.

Exercice 45. Soient $a, b, c \in \mathbb{K}$, et soit $A := \begin{pmatrix} 1 & a & b \\ 0 & 3 & c \\ 0 & 0 & 5 \end{pmatrix}$.

- (1) Montrer que A est diagonalisable et donner ses valeurs propres.
- (2) Déterminer a, b, c de façon à ce que les vecteurs $v := {}^{t}(1, 1, 0)$ et $w := {}^{t}(1, 0, 1)$ soient des vecteurs propres de A.
- (3) Pour les valeurs de a, b, c obtenues en (2), donner une matrice $P \in M_3(\mathbb{R})$ inversible telle que $P^{-1}AP$ soit diagonale.
- (4) Toujours avec les valeurs de a, b, c obtenues en (2), calculer A^{457} .

Exercice 46. Dans chacun des cas suivants : déterminer les valeurs propres de la matrice A, trouver une base de $\ker(A - \lambda I)$ pour chaque valeur propre λ , et dire si A est diagonalisable.

(i)
$$A := \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 (ii) $A := \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$ (iii) $A := \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Exercice 47. Dans les 3 cas suivants, déterminer si A est diagonalisable; et si elle l'est, donner une matrice diagonale D et une matrice inversible P telles que $P^{-1}AP = D$.

(i)
$$A := \begin{pmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 (ii) $A := \begin{pmatrix} 3 & 0 & 0 \\ -4 & 3 & 4 \\ -4 & 0 & 7 \end{pmatrix}$ (iii) $A := \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Exercice 48. Montrer que la matrice $A := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ est diagonalisable sur \mathbb{R} , et déterminer une base de vecteurs propres pour A.

Exercice 49. Soit $A := \begin{pmatrix} 2 & -1 & 1 \\ -4 & 2 & -4 \\ -2 & 1 & -1 \end{pmatrix}$. Calculer A^k pour tout $k \in \mathbb{N}$.

Exercice 50. Soit $A \in M_d(\mathbb{K})$. On suppose que A admet d valeurs propres complexes distinctes $\lambda_1, \ldots, \lambda_d$. Montrer que pour tout polynôme P, on a

$$\det(P(A)) = P(\lambda_1) \cdots P(\lambda_d).$$

Exercice 51. Dans cet exercice, on considère la matrice $J \in M_5(\mathbb{R})$ définie comme suit :

$$J := \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (1) Calculer le polynôme caractéristique de J.
- (2) Montrer que J est diagonalisable sur \mathbb{C} et donner ses valeurs propres.
- (3) La matrice J est-elle diagonalisable sur \mathbb{R} ?
- (4) Pour tout $\alpha \in \mathbb{C}$, on note $u(\alpha)$ le vecteur $t(1, \alpha, \alpha^2, \alpha^3, \alpha^4) \in \mathbb{C}^5$. On pose également $\omega := e^{i\frac{2\pi}{5}}$.
 - (a) Montrer que pour tout $k \in [0, 4]$, le vecteur $u(\omega^k)$ est un vecteur propre pour J associé à la valeur propre ω^k .

(b) Conclure que $(u(1), u(\omega), u(\omega^2), u(\omega^3), u(\omega^4))$ est une base de vecteurs propres (complexes) pour J.

Exercice 52. Soient $a, b, c, d \in \mathbb{R}$. On considère la matrice $M \in M_4(\mathbb{R})$ définie comme suit :

$$M := \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix}.$$

- (1) Vérifier qu'on a $M = aI + bJ + cJ^2 + dJ^3$, où $J := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.
- (2) Déterminer les valeurs propres complexes de la matrice J.
- (3) En utilisant les questions précédentes et l'Exercice 50, montrer que

$$\det(M) = ((a+c)^2 - (b+d)^2)((a-c)^2 + (b-d)^2).$$

Exercice 53. Soient $a, b \in \mathbb{R}$, avec $b \neq 0$. Montrer que la matrice $A := \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ n'est pas diagonalisable sur \mathbb{R} , mais qu'elle est diagonalisable sur \mathbb{C} .

Exercice 54. Montrer que la matrice $A := \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ est diagonalisable sur \mathbb{C} , mais pas sur \mathbb{R} .

Exercice 55. Soient $a, b, d \in \mathbb{R}$. Montrer que la matrice $A := \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ est diagonalisable sur \mathbb{R} .

Exercice 56. Soient $a_1, a_2, a_3, b \in \mathbb{R}$. Montrer que la matrice $A := \begin{pmatrix} a_1 & 0 & b \\ 0 & a_2 & 0 \\ b & 0 & a_3 \end{pmatrix}$ est diagonalisable sur \mathbb{R} .

Exercice 57. Soient $a, b, c \in \mathbb{R}$. Montrer que la matrice $A := \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & b \\ a & b & c \end{pmatrix}$ est diagonalisable sur \mathbb{R} .

Exercice 58. Soit $A \in M_d(\mathbb{K})$. Montrer que si $P \in \mathbb{K}[\mathbf{z}]$ vérifie P(A) = 0, alors toutes les valeurs propres de A sont des racines de P.

Exercice 59. Soit $A \in M_d(\mathbb{R})$ vérifiant $A^n = I$ pour un certain entier $n \ge 1$.

(1) Montrer que A est diagonalisable sur \mathbb{C} .

(2) On suppose que n est impair. Montrer que si A est diagonalisable sur \mathbb{R} , alors A = I.

Exercice 60. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $L \in \mathcal{L}(E)$. Soit également F un sous-espace vectoriel de E. On suppose que F est invariant par L, ce qui signifie que $L(F) \subset F$, et on note $L_{|F}: F \to F$ la restriction de L à F, qui est donc une application linéaire de F dans F. Montrer que si L est diagonalisable, alors $L_{|F}$ est diagonalisable. (Commencer par observer que pour tout polynôme $P \in \mathbb{K}[\mathbf{z}]$, on a $P(L_{|F}) = P(L)_{|F}$.)

Exercice 61. Soit $A \in M_d(\mathbb{K})$. On note $\mathcal{C}(A)$ l'ensemble de toutes les matrices $B \in M_d(\mathbb{K})$ telles que AB = BA.

- (1) Montrer que si $P \in \mathbb{K}[\mathbf{z}]$, alors $P(A) \in \mathcal{C}(A)$.
- (2) Montrer que si $B \in \mathcal{C}(A)$, alors $B(\ker(A \lambda I)) \subset \ker(A \lambda I)$ pour tout $\lambda \in \mathbb{K}$.
- (3) Dans cette question, on suppose que A possède d valeurs propres distinctes $\lambda_1, \ldots, \lambda_d$. On fixe une base (u_1, \ldots, u_d) de \mathbb{K}^d telle que $Au_i = \lambda_i u_i$ pour $i = 1, \ldots, d$.
 - (a) Montrer que pour tout polynôme $P \in \mathbb{K}[\mathbf{z}]$, on a $P(A)u_i = P(\lambda_i)u_i$ pour $i = 1, \ldots, d$.
 - (b) En utilisant (2), montrer que si $B \in \mathcal{C}(A)$, alors il existe $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ tels que $Bu_i = \alpha_i u_i$ pour $i = 1, \ldots, d$.
 - (c) En utilisant les questions précédentes et l'Exercice 7, montrer que toute matrice $B \in \mathcal{C}(A)$ peut s'écrire B = P(A) pour un certain polynôme $P \in \mathbb{K}[\mathbf{z}]$.
- (4) Dans cette question, on suppose qu'il existe un vecteur $e \in \mathbb{K}^d$ tel que la famille $(e, Ae, \dots, A^{d-1}e)$ soit une base de \mathbb{K}^d .
 - (a) Soit $B \in M_d(\mathbb{K})$ quelconque. Montrer qu'il existe un polynôme $P \in \mathbb{K}[\mathbf{z}]$ tel que Be = P(A)e.
 - (b) Montrer que toute matrice $B \in \mathcal{C}(A)$ peut s'écrire B = P(A) pour un certain polynôme $P \in \mathbb{K}[\mathbf{z}]$.
- (5) Est-il toujours vrai que si $A \in M_d(\mathbb{K})$, alors toute matrice $B \in \mathcal{C}(A)$ peut s'écrire B = P(A) avec $P \in \mathbb{K}[\mathbf{z}]$?