Feuille d'exercices nº 7

Exercice 1. Soit X une va réelle telle que $\mathbb{E}(|X|) = \infty$, et soit $(X_n)_{n \geq 1}$ une suite de va indépendantes et de même loi que X.

(1) Soit A > 0. Montrer qu'on a $\int_n^{n+1} \mathbb{P}(\frac{|X|}{A} > t) dt \leq \mathbb{P}(|X| > nA)$ pour tout $n \in \mathbb{N}$, et en déduire que

$$\sum_{n=0}^{\infty} \mathbb{P}(|X| > nA) = \infty.$$

- (2) En utilisant (1) et le lemme de Borel-Cantelli, montrer que $\overline{\lim} \frac{|X_n|}{n} = \infty$ presque sûrement.
- (3) En déduire que si on pose $S_n := X_1 + \dots + X_n$, alors $\frac{S_n}{n}$ n'a presque sûrement pas de limite quand $n \to \infty$.

Exercice 2. Soit X une va réelle ≥ 0 , et soit $(X_k)_{k\geq 1}$ une suite de va indépendantes et de même loi que X. En utilisant la loi des grands nombres et l'Exercice 1, montrer que si X n'est pas presque sûrement égale à 0, alors la série $\sum X_k$ diverge presque sûrement.

Exercice 3. Le but de l'exercice est de donner une preuve de la loi des grands nombres différentes de celle vue en cours, dans le cas où les va considérées appartiennent à L^4 . On fixe donc une va réelle X appartenant à L^4 , avec de plus $\mathbb{E}(X) = 0$, et une suite $(X_k)_{k\geq 1}$ de va indépendantes et de même loi que X. Il s'agit de montrer que $\frac{S_n}{n}$ tend presque sûrement vers 0, où $S_n = X_1 + \cdots + X_n$.

- (1) Montrer que si k_1, \ldots, k_4 sont des entiers quelconques, alors $X_{k_1} \cdots X_{k_4} \in L^1$.
- (2) On dit qu'un quadruplet $(k_1, \ldots, k_4) \in \mathbb{N}^4$ est un "carré" si tous les k_i sont égaux, et que (k_1, \ldots, k_4) est une "double paire" si deux des k_i sont égaux et les deux autres sont égaux et différents des deux premiers.
 - (a) Montrer que $\mathbb{E}(X_{k_1}\cdots X_{k_4})=0$ si (k_1,\ldots,k_4) n'est pas un carré ou une double paire.
 - (b) Pour $n \ge 1$ donné, déterminer le nombre de carrés et de doubles paires (k_1, \ldots, k_4) avec $k_1, \ldots, k_4 \in [\![1, n]\!]$.
- (3) En utilisant (2), montrer qu'il existe deux constantes a et b telles que

$$\forall n \ge 1 : \mathbb{E}(S_n^4) = an + b \, n(n-1).$$

- (4) Montrer que pour tout $\varepsilon > 0$ fixé, on a $\mathbb{P}(|S_n| \ge n\varepsilon) = O(1/n^2)$.
- (5) Conclure.

Exercice 4. Soit $(X_i)_{i\geq 1}$ une suite de va réelles définies sur le même $(\Omega,\mathfrak{A},\mathbb{P})$. On suppose que (X_i) est uniformément bornée, autrement dit qu'il existe une constante C telle que $|X_i(\omega)| \leq C$ pour tout i et pour tout $\omega \in \Omega$. Pour $n \geq 1$, on pose $S_n := X_1 + \dots + X_n.$

(1) Montrer que si $k, n \in \mathbb{N}^*$ vérifient $k^2 \leq n < (k+1)^2$, alors

$$\left| \frac{S_n(\omega)}{n} - \frac{S_{k^2}(\omega)}{k^2} \right| \le 2C \left(1 - \frac{k^2}{n} \right)$$
 pour tout $\omega \in \Omega$.

En déduire que si $\frac{S_{k^2}}{k^2} \xrightarrow{ps} 0$ quand $k \to \infty$, alors la suite $\left(\frac{S_n}{n}\right)$ converge presque sûrement vers 0.

- (2) On suppose maintenant que les X_i sont indépendantes et centrées (mais n'ont pas forcément la même loi).

 - (a) Montrer que pour tout $m \in \mathbb{N}^*$, on a $\mathbb{E}(S_m^2) \leq C^2 m$. (b) En déduire une majoration de $\mathbb{P}(|S_{k^2}| \geq k^2 \varepsilon)$ pour $\varepsilon > 0$ et $k \in \mathbb{N}^*$.
 - (c) Montrer que $\frac{S_n}{n}$ tend presque sûrement vers 0 quand $n \to \infty$.

Exercice 5. Soit X une va réelle appartenant à L^1 et centrée, et soit $(X_i)_{i\geq 1}$ une suite de va indépendantes et de même loi que X, définies sur $(\Omega, \mathfrak{A}, \mathbb{P})$. Pour $n \geq 1$, on pose $S_n := X_1 + \cdots + X_n$. Le but de l'exercice est de montrer que $\frac{S_n}{n}$ tend vers 0 en norme L^1 .

- (1) Montrer que $\mathbb{E}(|X|\mathbf{1}_{[A,\infty[}(|X|)))$ tend vers 0 quand $A \to \infty$.
- (2) Déduire de (1) que pour tout $\varepsilon > 0$ donné, on peut trouver A_{ε} tel que

$$\forall A \ge A_{\varepsilon} \ \forall i \ge 1 : \mathbb{E}(|X_i|\mathbf{1}_{[A,\infty[}(|X_i|))) \le \varepsilon/2.$$

Montrer ensuite que pour tout ensemble $E \in \mathfrak{A}$ et pour tout $i \geq 1$, on a

$$\int_{E} |X_{i}| d\mathbb{P} \leq A_{\varepsilon} \, \mathbb{P}(E) + \varepsilon/2.$$

(3) Montrer que pour tout $\varepsilon > 0$ donné, on peut trouver $\delta = \delta_{\varepsilon} > 0$ tel que la propriété suivante ait lieu : pour tout $E \in \mathfrak{A}$ vérifiant $\mathbb{P}(E) < \delta$ et pour tout $n \geq 1$,

$$\int_{E} \left| \frac{S_n}{n} \right| d\mathbb{P} \le \varepsilon.$$

(4) Pour $n \ge 1$ et $\varepsilon > 0$, on pose $E_{n,\varepsilon} := \{ \left| \frac{S_n}{n} \right| \ge \varepsilon \}$. Montrer que

$$\left\| \frac{S_n}{n} \right\|_1 \le \varepsilon + \int_{E_{n,\varepsilon}} \left| \frac{S_n}{n} \right| d\mathbb{P}.$$

(5) Démontrer le résultat souhaité.

Exercice 6. Le but de l'exercice est de donner une autre preuve du résultat établi à l'Exercice 5, dont on garde les notations.

- (1) Établir le résultat lorsque la va X appartient à L^{∞} .
- (2) On ne suppose plus que $X \in L^{\infty}$. Pour $K \in \mathbb{N}^*$, on pose $\widetilde{X}_K := X\mathbf{1}_{|X| \leq K}$ et $m_K := \mathbb{E}(\widetilde{X}_K)$. Justifier que $\widetilde{X}_K \in L^{\infty}$, et en déduire que si on pose $X_{i,K} = X_i \mathbf{1}_{|X_i| \leq K}$ et $S_{n,K} = X_{1,K} + \cdots + X_{n,K}$, alors $\frac{S_{n,K}}{n} \to m_K$ en norme L^1 quand $n \to \infty$, pour tout $K \in \mathbb{N}^*$ fixé.
- (3) Vérifier que $\left\|\frac{S_{n,K}}{n} \frac{S_n}{n}\right\|_1 \le \|\widetilde{X}_K X\|_1$ et $|m_K| \le \|\widetilde{X}_K X\|_1$ pour tout n et pour tout K.
- (4) Conclure.

Exercice 7. Soit (X_i) une suite de va indépendantes à valeurs dans \mathbb{R}^d , uniformément distribuée sur un borélien $K \subseteq \mathbb{R}^d$, et soit f une fonction intégrable sur K. Montrer que

$$Z_n = \frac{f(X_1) + \dots + f(X_n)}{n}$$

converge presque sûrement vers une constante à déterminer.

Exercice 8. Soit $(U_i)_{i\geq 1}$ une suite de va indépendantes uniformément distribuées sur [0,1[. Pour $n\geq 1$, on pose

$$A_n := \frac{1}{n} \sum_{i=1}^n U_i$$
 et $G_n := \left(\prod_{i=1}^n U_i\right)^{1/n}$.

Montrer que les suites (A_n) et (G_n) convergent presque sûrement vers des constantes à déterminer.

Exercice 9. Soit X une va réelle appartenant à L^2 , de moyenne m et de variance σ^2 , et soit $(X_i)_{i\geq 1}$ une suite de va indépendantes et de même loi que X.

(1) Montrer que

$$Z_n := \frac{1}{n} \sum_{i=1}^{n} (X_i - m)^2$$

converge presque sûrement vers une constante à déterminer.

(2) Pour $n \ge 2$, on pose $M_n := \frac{1}{n} \sum_{i=1}^n X_i$ et

$$V_n := \frac{1}{n-1} \sum_{i=1}^n (X_i - M_n)^2.$$

(a) Calculer $\mathbb{E}(V_n)$ pour tout n.

(b) Montrer que la suite (V_n) converge presque sûrement vers une constante à déterminer.

Exercice 10. Soit X une va réelle apartenant à L^2 , centrée et de variance $\sigma^2 > 0$; et soit $(X_i)_{i \geq 1}$ une suite de va indépendantes et de même loi que X. On suppose également que la loi de X est diffuse. Montrer que

$$Y_n := \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2}$$

est une va bien définie (presque sûrement), et converge presque sûrement vers une constante à déterminer.

Exercice 11. Soient X et Y deux va réelles définies sur le même $(\Omega, \mathfrak{A}, \mathbb{P})$. On suppose que X est bornée, et qu'il existe une constante c > 0 telle que $Y(\omega) \geq c$ pour tout $\omega \in \Omega$. Soient également $(X_i)_{i\geq 1}$ une suite de va indépendantes de même loi que X, et $(Y_i)_{i>1}$ une suite de va indépendantes de même loi que Y. Montrer que

$$\mathbb{E}\left(\frac{X_1 + \dots + X_n}{Y_1 + \dots + Y_n}\right) \to \frac{\mathbb{E}(X)}{\mathbb{E}(Y)} \quad \text{quand } n \to \infty.$$

Exercice 12. Soient f et g deux fonctions continues définies sur un intervalle $[a, b] \subseteq \mathbb{R}$, avec g(x) > 0 pour tout $x \in [a, b]$. En utilisant l'Exercice 11, montrer que

$$\frac{1}{(b-a)^n} \int_{[a,b]^n} \frac{f(x_1) + \dots + f(x_n)}{g(x_1) + \dots + g(x_n)} dx_1 \cdots dx_n \xrightarrow{n \to \infty} \frac{\int_a^b f(x) dx}{\int_a^b g(x) dx}.$$

Exercice 13. Soit $\Omega = [0, 1[$ muni de la mesure de Lebesgue. On rappelle que tout nombre $\omega \in [0, 1[$ admet un développement décimal, et que ce développement est unique si on impose de plus que les chiffres ne soient pas tous égaux à 9 à partir d'un certain rang. On note $X_1(\omega), X_2(\omega), \ldots$ les chiffres du développement décimal de ω , de sorte que $X_k(\omega) \in \{0, \ldots, 9\}$ pour tout k et

$$\omega = \sum_{k=1}^{\infty} X_k(\omega) \, 10^{-k}.$$

- (1) Montrer que pour tout $k \geq 1$, la variable aléatoire X_k est uniformément distribuée sur l'ensemble [0, 9].
- (2) Montrer que si $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in [0, 9]$, alors l'ensemble

$$\Omega_{a_1,...,a_n} := \{ \omega \in [0,1[; X_1(\omega) = a_1,..., X_n(\omega) = a_n \}$$

est un intervalle de longueur 10^{-n} ; et en déduire que les variables aléatoires X_k sont indépendantes.

(3) Pour $\omega \in [0,1[$, $a \in [0,9]]$ et $n \geq 1$, on note $N(\omega,a,n)$ le nombre d'entiers $k \in [1,n]$ tels que $X_k(\omega) = a$; et on dit que ω est **normal** si, pour tout $a \in [0,9]$:

$$\frac{N(\omega, a, n)}{n} \xrightarrow[]{n \to \infty} \frac{1}{10}.$$

Montrer que presque tout nombre $\omega \in [0, 1]$ est normal.

Exercice 14. Soit X une va réelle, et soit (X_i) une suite de va indépendantes et de même loi que X, toutes définies sur le même $(\Omega, \mathfrak{A}, \mathbb{P})$. Pour $x \in \mathbb{R}$, $n \geq 1$ et $\omega \in \Omega$, on pose

$$F_n(\omega, t) := \frac{1}{n} \# \{ i \in [1, n]; \ X_i(\omega) \le t \}.$$

- (1) Montrer que pour tout $t \in \mathbb{R}$ fixé, $F_n(\omega, t)$ tend presque sûrement vers $F_X(t)$.
- (2) Dans cette question, on veut montrer qu'en fait, pour presque tout $\omega \in \Omega$:

$$F_n(\omega, t) \to F_X(t)$$
 uniformément sur \mathbb{R} .

Ce résultat s'appelle le **Théorème de Glivenko-Cantelli**. Pour simplifier, on supposera que F_X est continue sur \mathbb{R} .

- (a) Montrer que pour tout entier $N \geq 2$ et pour tout $1 \leq k \leq N-1$, on peut trouver $t_{k,N} \in \mathbb{R}$ tel que $F_X(t_{k,N}) = \frac{k}{n}$. Dans la suite, on posera aussi $t_{0,N} := -\infty$ et $t_{N,N} := \infty$.
- (b) Soit $N \geq 2$. Montrer qu'il existe un ensemble $\Omega_N \subseteq \Omega$ vérifiant $\mathbb{P}(\Omega_N) = 1$ tel que

$$\forall \omega \in \Omega_N \ \forall k \in [1, N-1] : F_n(\omega, t_{k,N}) \xrightarrow{n \to \infty} F_X(t_{k,N}).$$

(c) Soit toujours $N \geq 2$. Montrer que si $k \in [0, N-1]$ et si $t_{k,N} \leq t \leq t_{k+1,N}$, alors on a pour tout $\omega \in \Omega$ et pour tout n:

$$F_n(t_{k,N}) - F_X(t_{k+1,N}) \le F_n(\omega, t) - F_X(t) \le F_n(t_{k+1,N}) - F_X(t_{k,N}).$$

En déduire que pour tout $\omega \in \Omega_N$, on a

$$\overline{\lim_{n\to\infty}} \sup_{t\in\mathbb{R}} |F_n(\omega,t) - F_X(t)| \le \frac{2}{N}.$$

(d) Démontrer le résultat souhaité.

Exercice 15. Soit μ une mesure de probabilité borélienne sur un intervalle compact K = [a, b]. Le but de l'exercice est de montrer qu'il existe une suite $(x_i)_{i\geq 1}$ de points de K] telle que, pour toute fonction continue $f: K \to \mathbb{R}$,

$$\frac{f(x_1) + \dots + f(x_n)}{n} \xrightarrow{n \to \infty} \int_K f \, d\mu.$$

(1) Soit $(X_i)_{i\geq 1}$ une suite de va indépendantes à valeurs dans K, définies sur un espace de probabilité $(\Omega, \mathfrak{A}, \mathbb{P})$, avec $\mathbb{P}_{X_i} = \mu$ pour tout $i \geq 1$. Montrer que si $f: K \to \mathbb{R}$ est une fonction continue donnée, il existe un ensemble $\Omega_f \subseteq \Omega$ tel $\mathbb{P}(\Omega_f) = 1$ et

$$\frac{f(X_1(\omega)) + \dots + f(X_n(\omega))}{n} \xrightarrow{n \to \infty} \int_K f \, d\mu \qquad \text{pour tout } \omega \in \Omega_f.$$

- (2) On note $\mathcal{C}(K)$ l'espace des fonctions continues sur K, muni de la norme $\|\cdot\|_{\infty}$. Montrer que $\mathcal{C}(K)$ est séparable, i.e. il existe un ensemble $\mathcal{P}\subseteq\mathcal{C}(K)$ dénombrable et dense dans $\mathcal{C}(K)$.
- (3) Montrer à l'aide de (1) qu'il existe une suite $(x_i)_{i>1}$ de points de K telle que

$$\frac{P(x_1) + \dots + P(x_n)}{n} \xrightarrow{n \to \infty} \int_K P \, d\mu \qquad \text{pour toute } P \in \mathcal{P}.$$

(4) Montrer que la suite (x_i) convient.

Exercice 16. Soit X une va réelle appartenant à L^2 , centrée et de variance $\sigma^2 > 0$; et soit (X_i) une suite de va indépendantes et de même loi que X. Pour $n \geq 1$, on pose $S_n := X_1 + \cdots + X_n$. Montrer que $\frac{S_n}{\sqrt{n}}$ ne converge pas en probabilité.

Exercice 17. On dit qu'une va réelle X suit une loi de Cauchy de paramètre a > 0 si $\mathbb{P}_X = \frac{a}{\pi} \frac{1}{a^2 + x^2} dx$.

- (1) Montrer que si X suit une loi de Cauchy de paramètre a et si $\lambda > 0$, alors λX suit une loi de Cauchy de paramètre λa .
- (2) Montrer que si X et Y sont des va indépendantes suivant des lois de Cauchy de paramètre a et b, alors X + Y suit la loi de Cauchy de paramètre a + b.
- (3) Soit X une va suivant une loi de Cauchy de paramètre a > 0, et soit $(X_i)_{i \ge 1}$ une suite de va indépendantes et de même loi que X. Montrer que pour tout $n \ge 1$, la va $Z_n := \frac{X_1 + \dots + X_n}{n}$ suit elle aussi la loi de Cauchy de paramètre a.

Exercice 18. On joue une infinité de fois à pile ou face. Pour $n \geq 1$, on note Δ_n la différence entre le nombre de "piles" et le nombre de "faces" après n lancers de la pièce. Pour a < b donnés, déterminer la limite de $\mathbb{P}(\sqrt{n} \, a \leq \Delta_n \leq \sqrt{n} \, b)$ quand $n \to \infty$.

Exercice 19. Soit X une va réelle appartenant à L^2 , de moyenne m, et soit $(X_i)_{i\geq 1}$ une suite de va indépendantes et de même loi que X. Pour $n\geq 1$, on pose $S_n:=X_1+\cdots+X_n$. Déterminer, si elle existe, la limite de $\mathbb{P}\left(\frac{S_n}{n}>m\right)$ quand $n\to\infty$.

Exercice 20. Pour $n \in \mathbb{N}^*$, soit Y_n une va suivant une loi de Poisson de paramètre n. Pour a < b données, déterminer la limite de $\mathbb{P}(n + \sqrt{n} \ a \le Y_n \le n + \sqrt{n} \ b)$ quand $n \to \infty$.

Exercice 21. Le but de l'exercice est de montrer que

$$e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \to \frac{1}{2}$$
 quand $n \to \infty$.

- (1) Soit $(X_i)_{i\geq 1}$ une suite de va indépendantes suivant une loi de Poisson de paramètre 1. Pour $n\geq 1$, on pose $S_n:=X_1+\cdots+X_n$. Calculer $\mathbb{P}(S_n\leq n)$.
- (2) Démontrer le résultat souhaité en apppliquant le Théorème Limite Central.

Exercice 22. Soit (ε_k) une suite de va indépendantes suivant toutes la loi de Rademacher. Le but de l'exercice est de montrer qu'il existe une constante c > 0 telle que

$$\forall n \ge 1 : \mathbb{E}\left(\left|\sum_{k=1}^n \varepsilon_k\right|\right) \ge c\sqrt{n}.$$

(1) Soit (Y_n) une suite de va positives. On suppose que (Y_n) converge en loi vers une va $Y \geq 0$. En utilisant la "formule d'intégration par parties", montrer que

$$\mathbb{E}(Y) \le \underline{\lim} \, \mathbb{E}(Y_n).$$

(2) Démontrer le résultat souhaité en utilisant le Théorème limite central.

Exercice 23. Le but de l'exercice est de donner une preuve "probabiliste" de la formule de Stirling

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$
 quand $n \to \infty$.

(1) Soit $(Z_n)_{n\geq 1}$ une suite de va réelles appartenant à L^2 . On suppose que (Z_n) converge en loi vers une va Z, et qu'il existe une constante C telle que $\mathbb{E}(Z_n^2) \leq C$ pour tout $n \geq 1$. En appliquant convenablement le théorème de convergence dominée, montrer que

$$\int_0^\infty \mathbb{P}(Z_n > t) dt \xrightarrow{n \to \infty} \int_0^\infty \mathbb{P}(Z > t) dt.$$

(2) Montrer que si Z est une va réelle appartenant à L^1 , alors

$$\int_0^\infty \mathbb{P}(Z > t) \, dt = \mathbb{E} \big(Z \mathbf{1}_{[0,\infty[}(Z)) \big).$$

(3) Soit $(X_i)_{i\geq 1}$ une suite de va indépendantes suivant chacune une loi de Poisson de paramètre $\lambda=1$. Pour $n\geq 1$, on pose $S_n:=X_1+\cdots+X_n$ et

$$Z_n := \frac{S_n - n}{\sqrt{n}}.$$

En observant que $\mathbf{1}_{[0,\infty[}(Z_n) = \mathbf{1}_{[n,\infty[}(S_n), \text{ montrer qu'on a})$

$$\mathbb{E}(Z_n \mathbf{1}_{[0,\infty[}(Z_n))) = \frac{e^{-n}}{\sqrt{n}} \frac{n^n}{(n-1)!}.$$

- (4) Calculer $\mathbb{E}(Z\mathbf{1}_{[0,\infty[}(Z)))$ lorsque Z est une va suivant la loi $\mathcal{N}(0,1)$.
- (5) Démontrer la formule de Stirling.

Exercice 24. Soit $f:]0, \infty[\to \mathbb{R}$ une fonction continue bornée, et soit h > 0. En considérant une suite (X_i) de variables indépendantes suivant une loi de Poisson de paramètre h, montrer que pour tout $a \ge 0$, on a

$$f(a+h) = \lim_{n \to \infty} e^{-nh} \sum_{k=0}^{\infty} f\left(a + \frac{k}{n}\right) \frac{(nh)^k}{k!}.$$

Exercice 25. Soit $f:[0,\infty[\to\mathbb{C}]$ une fonction continue bornée. Pour s>0, on pose

$$\mathcal{L}f(s) := \int_0^\infty e^{-st} f(t) \, dt.$$

(La fonction $\mathcal{L}f$ ainsi définie s'appelle la transformée de Laplace de f.)

- (1) Montrer que $\mathcal{L}f$ est de classe \mathcal{C}^{∞} sur $]0,\infty[$, et donner une formule pour les dérivées $(\mathcal{L}f)^{(k)}(s), k \geq 1$.
- (2) Soit (X_i) une suite de va indépendantes suivant toutes une loi exponentielle de paramètre $\lambda > 0$. Montrer (par récurrence) que pour tout $n \geq 1$, la va $S_n := X_1 + \cdots + X_n$ suit la loi $\rho_n(x) dx$, où $\rho_n(x) = \frac{x^{n-1}}{(n-1)!} \lambda^n e^{-\lambda x} \mathbf{1}_{]0,\infty[}(x)$.
- (3) Soit a > 0. En considérant une suite de va indépendantes suivant une loi exponentielle de paramètre $\lambda := \frac{1}{a}$ et en calculant $\mathbb{E}\left(f\left(\frac{S_n}{n}\right)\right)$, montrer que

$$f(a) = \lim_{n \to \infty} \frac{(-1)^{n-1} n^n}{(n-1)! a^n} (\mathcal{L}f)^{(n-1)} \left(\frac{n}{a}\right).$$

Exercice 26. Soit X_0 une va réelle; on note μ la loi de X_0 . On suppose que X_0 appartient à L^2 , avec pour moyenne m et pour variance σ^2 . On suppose également que la loi μ possède la propriété suivante : si X et Y sont des va indépendantes et de loi μ , alors $\frac{X+Y}{\sqrt{2}}$ suit elle aussi la loi μ .

(1) Montrer que m=0.

(2) Soit $(X_i)_{i\geq 1}$ une suite de va indépendantes et de loi μ . Montrer que pour tout $n\geq 1$, la va

$$Z_n := \frac{X_1 + \dots + X_{2^n}}{\sqrt{2^n}}$$

suit elle aussi la loi μ .

(3) Montrer que μ est la loi normale $\mathcal{N}(0, \sigma^2)$.

Exercice 27. On dit qu'une va réelle X est **stable** si la propriété suivante a lieu pour tout $n \geq 1$: il existe des constantes a_n et b_n telles que, si X_1, \ldots, X_n sont des va indépendantes et de même loi que X, alors $X_1 + \cdots + X_n$ a la même loi que $a_nX + b_n$.

- (1) Montrer que toute va suivant une loi normale $\mathcal{N}(m, \sigma^2)$ est stable.
- (2) Soit X une va stable, appartenant à L^2 , de moyenne m et de variance $\sigma^2 > 0$.
 - (a) Soit $(X_i)_{i\geq 1}$ une suite de va indépendantes et de même loi que X. Pour tout $n\geq 1$, calculer explicitement les coefficients a_n et b_n tels que $X_1+\cdots+X_n\sim a_nX+b_n$.
 - (b) Avec les notations de (a), on pose $S_n := X_1 + \dots + X_n$ pour tout $n \ge 1$. Montrer que la va $Z_n = \frac{S_n nm}{\sqrt{n}}$ a la même loi que X' = X m.
 - (c) Déterminer la loi de X.

Exercice 28. Soit X une va réelle appartenant à L^2 , centrée et de variance $\sigma^2 > 0$; et soit $(X_i)_{i \geq 1}$ une suite de va indépendantes et de même loi que X. On suppose de plus que la loi de X est diffuse. Pour $n \geq 1$, on pose

$$Y_n := \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2}.$$

Montrer que $\sqrt{n} Y_n$ converge en loi vers une va Z à déterminer.

Exercice 29. Soit X une va réelle ≥ 0 appartenant à L^2 , de moyenne m=1 et de variance $\sigma^2 > 0$; et soit $(X_i)_{i\geq 1}$ une suite de va indépendantes et de même loi que X. Pour $n\geq 1$, on pose $S_n:=X_1+\cdots+X_n$.

- (1) Montrer que $\frac{\sqrt{S_n} + \sqrt{n}}{\sqrt{n}}$ converge presque sûrement vers une constante à déterminer.
- (2) En déduire que $\sqrt[n]{S_n} \sqrt{n}$ converge en loi vers une va Z à déterminer.

Exercice 30. Soit (Z_n) une suite de va réelles définies sur $(\Omega, \mathfrak{A}, \mathbb{P})$, convergeant en loi vers une va Z. On suppose que les Z_n et Z sont dans L^2 , et que la suite (Z_n) est bornée en norme L^2 . Le but de l'exercice est de montrer que si $f : \mathbb{R} \to \mathbb{R}$ une fonction continue telle que $f(x) = o(x^2)$ quand $x \to \pm \infty$, alors $\mathbb{E}(f(Z_n)) \to \mathbb{E}(f(Z))$.

(1) Justifier que $f(X) \in L^1$ pour toute va $X \in L^2$.

(2) Pour $k \in \mathbb{N}$, on note $\theta_k : \mathbb{R} \to \mathbb{R}$ la fonction valant 1 sur [-k, k], nulle sur $]-\infty, -(k+1)] \cup [k+1, \infty[$ et affine sur [-(k+1), -k] et [k, k+1]. Montrer que pour tout $\varepsilon > 0$, on peut trouver un entier K_{ε} tel que, pour toute va $X \in L^2$ et pour tout $k \geq K_{\varepsilon}$, on a

$$\left| \mathbb{E} \left(\theta_k(X) f(X) \right) - \mathbb{E} \left(f(X) \right) \right| \le \varepsilon \, \mathbb{E}(X^2).$$

- (3) Justifier que pour tout $k \in \mathbb{N}$, on a $\lim_{n \to \infty} \mathbb{E}(\theta_k(Z_n) f(Z_n)) = \mathbb{E}(\theta_k(Z) f(Z))$.
- (4) Démontrer le résultat souhaité.

Exercice 31. Soit X une va réelle appartenant à L^2 , centrée et de variance $\sigma^2 > 0$; et soit $(X_i)_{i \geq 1}$ une suite de va indépendantes et de même loi que X. Pour $n \geq 1$, on pose $S_n := X_1 + \cdots + X_n$. En utilisant l'Exercice 30, Montrer que $\mathbb{E}\left(\frac{|S_n|}{\sqrt{n}}\right)$ admet une limite à déterminer quand $n \to \infty$. Comparer avec le résultat démontré à l'Exercice 5.