Feuille d'exercices n° 2

(les "3 principes de base")

Exercice 1. (la preuve "la plus courte" du Théorème de Riesz)

Soit $(X, \|\cdot\|)$ un espace vectoriel normé. On suppose que la boule unité ouverte de X peut être recouverte par un nombre fini de boules ouvertes de rayon 1/2; autrement dit, qu'on peut trouver $x_1, \ldots, x_N \in X$ tels que $B_X(0,1) \subseteq \bigcup_{i=1}^N B(x_i, 1/2)$. On pose $E := \text{vect}(x_1, \ldots, x_N)$, et on note $\pi : X \to X/E$ la surjection canonique. Montrer qu'on a $\pi(B_X(0,1)) \subseteq B_{X/E}(0,1/2)$, et en déduire que $X/E = \{0\}$. Conclusion?

Exercice 2. Soit X un espace vectoriel normé. Soient également E et F deux sousespaces vectoriels fermés de X. On suppose que F est de dimension finie. En notant $\pi: X \to X/E$ la surjection canonique, montrer que $\pi(F)$ est fermé dans l'espace quotient X/E, et en déduire que E+F est un sous-espace fermé de X.

Exercice 3. Soient X et Y deux espaces vectoriels normés, et soit $T: X \to Y$ une application linéaire. On suppose que T est de rang fini, *i.e.* $\operatorname{Im}(T)$ est de dimension finie. Montrer que T est continue si et seulement si $\ker(T)$ est fermé dans X. (Considérer l'espace quotient $X/\ker(T)$).

Exercice 4. Soit X un espace vectoriel normé, et soit $\phi \in X^* \setminus \{0\}$. Montrer que pour tout $a \in X \setminus \ker(\phi)$, on a

$$\|\phi\| = \frac{|\phi(a)|}{\operatorname{dist}(a, \ker(\phi))}$$

(Une preuve directe se fait très bien; mais on peut aussi considérer l'application quotient $\widetilde{\phi}: X/\ker(\phi) \to \mathbb{K}$.)

Exercice 5. (dual de c_0)

Dans cet exercice, on détermine le dual de l'espace de Banach $c_0 = c_0(\mathbb{N})$. On notera $(e_n)_{n \in \mathbb{N}}$ la "base canonique" de c_0 .

- (1) Montrer que si $a \in \ell^1(\mathbb{N})$, alors la formule $\phi_a(x) := \sum_{n=0}^{\infty} a_n x_n$ définit une forme linéaire continue sur c_0 , et qu'on a $\|\phi_a\| = \|a\|_1$.
- (2) Soit $\phi: c_0 \to \mathbb{K}$ une forme linéaire continue sur c_0 . Pour $n \in \mathbb{N}$, on pose $a_n := \phi(e_n)$. Montrer que si $x \in c_0$, alors $\phi(x) = \sum_0^\infty a_n x_n$, où la série converge dans \mathbb{K} . Montrer ensuite qu'on a $\sum_{n=0}^N |a_n| \leq \|\phi\|$ pour tout $N \in \mathbb{N}$.

(3) Montrer que c_0^* s'identifie isométriquement à ℓ^1 .

Exercice 6. (dual de ℓ^p , $1 \le p < \infty$)

Soit $p \in [1, \infty[$, et soit q l'exposant conjugué. En procédant comme dans l'exercice 5, montrer que le dual de $\ell^p = \ell^p(\mathbb{N})$ s'identifie isométriquement à ℓ^q .

Exercice 7. (décomposition de Riesz)

Soit X un espace vectoriel normé réel, et soient $p_1, \ldots, p_n : X \to \mathbb{R}$ des fonctionnelles sous-linéaires. Soit également $L: X \to \mathbb{R}$ une forme linéaire. On suppose qu'on a

$$\forall x \in X : L(x) \leqslant \sum_{k=1}^{n} p_k(x).$$

Montrer qu'il existe des formes linéaires $L_1, \ldots L_n : X \to \mathbb{R}$ telles que

$$L = \sum_{k=1}^{n} L_k$$
 et $\forall k : L_k \leqslant p_k$.

(On pourra considérer $E:=\{(x,\ldots,x);\ x\in X\}\subseteq X^n$ et la fonction $p:X^n\to\mathbb{R}$ définie par $p(x_1,\ldots,x_n):=\sum_{k=1}^n p_k(x_k)$.)

Exercice 8. On dit qu'une forme linéaire $L: \mathcal{C}([0,1],\mathbb{R}) \to \mathbb{R}$ est positive si on a $L(f) \geq 0$ pour toute $f \geq 0$. Montrer que toute forme linéaire continue L sur $\mathcal{C}([0,1],\mathbb{R})$ peut s'écrire $L = L_1 - L_2$ où L_1 et L_2 sont des formes linéaires positives. (Utiliser l'Exercice γ avec $p_1(f) := ||f^+||_{\infty}$ et $p_2(f) := ||f^-||_{\infty}$.)

Exercice 9. (prolongement par densité)

Soient X un espace vectoriel normé et Y un espace de Banach. Montrer que si E est un sous-espace vectoriel de X, alors toute application linéaire continue $T: E \to Y$ se prolonge de manière unique en une application linéaire continue $\widetilde{T}: \overline{E} \to Y$.

Exercice 10. Soient H un espace de Hilbert, Y un espace de Banach, et E un sous-espace vectoriel de H. Montrer que toute application linéaire continue $T: E \to Y$ se prolonge en une application linéaire continue $\widetilde{T}: H \to Y$.

Exercice 11. Soit H un espace de Hilbert, et soit $E \subseteq H$ un sous-espace fermé. Montrer que si $\varphi \in E^*$, alors alors φ possède une *unique* extension de Hahn-Banach $\Phi \in H^*$, et donner une formule pour Φ .

Exercice 12. Montrer que si $\varphi \in (c_0(\mathbb{N}))^*$, alors φ possède une unique extension de Hahn-Banach $\Phi \in (\ell^{\infty}(\mathbb{N}))^*$.

Exercice 13. Soit $E := \{x \in \ell^1(\mathbb{N}); \ x_{2i} = 0 \text{ pour tout } i \in \mathbb{N}\} \subseteq \ell^1(\mathbb{N})$. Montrer que si $\varphi \in E^*$ et $\varphi \neq 0$, alors φ possède une infinité d'extensions de Hahn-Banach.

Exercice 14. Soit X un espace vectoriel normé, et soit $E \subseteq X$ un sous-espace vectoriel de dimension finie.

- (1) Soit (e_1, \ldots, e_d) une base de E. Montrer qu'il existe des formes linéaires continues $e_1^*, \ldots, e_d^* \in X^*$ telles que $\langle e_i^*, e_j \rangle = \delta_{i,j}$ pour tous $i, j \in \{1, \ldots, n\}$.
- (2) Montrer qu'il existe une projection linéaire continue de X sur E, de norme au plus égale à $\sum_{i=1}^{d} \|e_i^*\| \|e_i\|$.

Exercice 15. Soit I un ensemble non vide, et soit $\ell^{\infty}(I)$ l'espace de toutes les fonctions bornées $f: I \to \mathbb{R}$, muni de la norme $\|\cdot\|_{\infty}$. Soit également X un espace vectoriel normé réel, et soit E un sous-espace vectoriel de X. Montrer que toute application linéaire continue $T: E \to \ell^{\infty}(I)$ se prolonge en une application linéaire continue $\widetilde{T}: X \to \ell^{\infty}(I)$ vérifiant $\|\widetilde{T}\| = \|T\|$.

Exercice 16. Soit X un espace vectoriel normé et soit E un sous-espace fermé de X. Montrer que pour tout point $x \in X \setminus E$, on peut trouver $x^* \in X^*$ telle que $||x^*|| = 1$, $x^* \equiv 0$ sur E et $\langle x^*, x \rangle = \text{dist}(x, E)$.

Exercice 17. Soient X un espace vectoriel normé, [a, b] un intervalle compact de \mathbb{R} et $f:[a,b] \to X$ une fonction continue sur [a,b] et dérivable sur]a,b[. Montrer qu'il existe $c \in]a,b[$ tel que $||f(b)-f(a)|| \leq ||f'(c)|| (b-a)$.

Exercice 18. Soit X un espace de Banach séparable. Montrer qu'il existe un ensemble dénombrable $D \subseteq X^*$ qui sépare les points de X.

Exercice 19. (Théorème de Liouville vectoriel)

Soit X un espace de Banach complexe. Si Ω est un ouvert de \mathbb{C} , on dit qu'une fonction $f:\Omega\to\mathbb{C}$ est holomorphe si elle est \mathbb{C} -dérivable en tout point. Montrer que si $f:\mathbb{C}\to X$ est homomorphe et bornée, alors f est constante.

Exercice 20. Soit X un espace vectoriel normé réel. Pour tout $x \in X$, on pose

$$J(x) := \{ x^* \in X^*; \ \|x^*\| = \|x\| \text{ et } \langle x^*, x \rangle = \|x\|^2 \}.$$

- (1) Montrer que dans la définition de J(x), on peut remplacer " $||x^*|| = ||x||$ " par " $||x^*|| \le ||x||$ ".
- (2) Montrer que J(x) est une partie non-vide, convexe et fermée de X^* .

(3) Montrer que si $x \in X$ et $x^* \in X^*$, alors

$$x^* \in J(x) \iff \forall y \in X : \langle x^*, y - x \rangle \le \frac{1}{2} (\|y\|^2 - \|x\|^2).$$

(Pour \Leftarrow , commencer par prendre y = tx pour montrer que $\langle x^*, x \rangle = ||x||^2$.)

(4) Montrer que si $x, y \in X$, alors

$$\forall x^* \in J(x) \ \forall y^* \in J(y) \ : \ \langle y^* - x^*, y - x \rangle \geqslant (\|y\| - \|x\|)^2 \geqslant 0.$$

- (5) Dans cette question, on suppose que la norme de X^* est strictement convexe.
 - (a) Montrer que pour tout $x \in X$, l'ensemble J(x) est réduit à 1 point (qu'on notera encore J(x)).
 - (b) Montrer que si $x, y \in X$, alors

$$J(x) = J(y) \iff \langle J(y) - J(x), y - x \rangle = 0.$$

Exercice 21. Soit $X := (\mathbb{R}^d, \|\cdot\|_p)$, où $1 \le p \le \infty$. Avec les notations de l'Exercice 20, déterminer explicitement J(x) pour $x \in X$.

Exercice 22. Soit X un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et soit $(x_n)_{n \in \mathbb{N}}$ une suite de vecteurs de X linéairement indépendants. Soit également $(a_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathbb{K} . Montrer que les propriétés suivantes sont équivalentes.

- (i) Il existe une forme linéaire continue $x^* \in X^*$ telle que $\forall n \in \mathbb{N} : \langle x^*, x_n \rangle = a_n$.
- (ii) Il existe une constante $C < \infty$ telle que

$$\forall \lambda_1, \dots, \lambda_N \in \mathbb{K} : \left| \sum_{j=1}^N \lambda_j a_j \right| \leqslant C \left\| \sum_{j=1}^N \lambda_j x_j \right\|.$$

Exercice 23. Soit X un espace vectoriel normé réel, et soient $\phi, \psi \in X^*$ vérifiant $\|\phi\| = 1 = \|\psi\|$. Soit également $\varepsilon > 0$. On suppose qu'on a $|\phi(x)| \le \varepsilon \|x\|$ pour tout $x \in \ker(\psi)$.

- (1) Montrer qu'il existe une forme linéaire $\widetilde{\phi} \in X^*$ telle que $\|\widetilde{\phi}\| \leq \varepsilon$ et $\widetilde{\phi} \phi$ est proportionnelle à ψ .
- (2) On écrit $\widetilde{\phi} \phi = \lambda \psi$, où $\lambda \in \mathbb{R}$. Montrer que λ vérifie $|1 |\lambda|| \leq \varepsilon$.
- (3) Montrer qu'on a $\|\phi + \psi\| \le 2\varepsilon$ ou $\|\phi \psi\| \le 2\varepsilon$. (Discuter selon le signe de λ).

Exercice 24. $(\ell^1 \text{ n'est pas le dual de } \ell^{\infty})$

(1) Montrer que si $a \in \ell^1(\mathbb{N})$, alors la formule $\Phi_a(x) := \sum_{n=0}^{\infty} a_n x_n$ définit une forme linéaire continue sur $\ell^{\infty}(\mathbb{N})$, et qu'on a $\|\Phi_a\| = \|a\|_1$.

- (2) On note c le sous-espace de ℓ^{∞} constitué par toutes les suites (x_n) admettant une limite (finie) quand $n \to \infty$.
 - (a) Montrer qu'il existe une forme linéaire continue $\Phi \in (\ell^{\infty})^*$ telle que $\forall x \in c : \Phi(x) = \lim_{n \to \infty} x_n$.
 - (b) Montrer que Φ n'est pas du type Φ_a .

Exercice 25. $(L^1 \text{ n'est pas le dual de } L^{\infty})$

Montrer que si $f \in L^1(\mathbb{R})$, alors la formule $\Phi_f(g) := \int_{\mathbb{R}} f(t)g(t) dt$ définit une forme linéaire continue sur $L^{\infty}(\mathbb{R})$, et qu'on a $\|\Phi_f\| = \|f\|_1$. Montrer ensuite qu'il existe des formes linéaires continues sur $L^{\infty}(\mathbb{R})$ qui ne sont pas de la forme Φ_f .

Exercice 26. Soit X un espace vectoriel normé. Pour $A \subseteq X$ et $B \subseteq X^*$, on pose

$$A^{\perp} := \left\{ x^* \in X^*; \ \forall x \in A : \ \langle x^*, x \rangle = 0 \right\}$$
 et
$$B_{\perp} := \left\{ x \in X; \ \forall x^* \in B : \ \langle x^*, x \rangle = 0 \right\}.$$

Montrer que si E est un sous-espace vectoriel de X, alors $(E^{\perp})_{\perp} = \overline{E}$.

Exercice 27. Soit Ω un ouvert connexe de \mathbb{C} , et soit $f:\Omega\to X$ une fonction holomorphe à valeurs dans un espace de Banach X. Montrer que si $\Lambda\subseteq\Omega$ possède un point d'accumulation dans Ω , alors $\overline{\mathrm{Vect}}\{f(\lambda);\ \lambda\in\Lambda\}=\overline{\mathrm{Vect}}\{f(z);\ z\in\Omega\}$.

Exercice 28. Soit $1 . Montrer que <math>E := \{x \in \ell^p(\mathbb{N}); x \in \ell^1 \text{ et } \sum_{n=0}^{\infty} x_n = 0\}$ est dense dans $\ell^p(\mathbb{N})$.

Exercice 29. Montrer que $E := \{ f \in L^2(\mathbb{R}); f \in L^1 \text{ et } \int_{\mathbb{R}} f(t) dt = 0 \}$ est dense dans $L^2(\mathbb{R})$.

Exercice 30. Soit X un espace de Banach complexe, et soit $(e_n)_{n\in\mathbb{N}}$ une suite bornée d'éléments de X tel que $\overline{\text{vect}}\{e_n;\ n\in\mathbb{N}\}=X$. Pour tout $\lambda\in\mathbb{D}:=\{z\in\mathbb{C};\ |z|<1\}$, on pose $x_\lambda:=\sum_{n=0}^\infty \lambda^n e_n$. Justifier la définition, puis montrer que si $\Lambda\subseteq\mathbb{D}$ est un ensemble possédant un point d'accumulation dans \mathbb{D} , alors $\text{vect}\{x_\lambda;\ \lambda\in\Lambda\}$ est dense dans X.

Exercice 31. Soit $p \in [1, \infty[$, et soit $\mathbb{D} = \{z \in \mathbb{C}; |z| < 1\}$. Pour $\lambda \in \mathbb{D}$, on note x_{λ} l'élément de $\ell^p(\mathbb{N})$ défini par $x_{\lambda} := (\lambda^n)_{n \in \mathbb{N}}$. Montrer que si $\Lambda \subseteq \mathbb{D}$ est un ensemble possèdant un point d'accumulation dans \mathbb{D} , alors $\text{Vect}\{x_{\lambda}; \lambda \in \Lambda\}$ est dense dans $\ell^p(\mathbb{N})$. (Utiliser l'exercice 30, ou procéder directement).

Exercice 32. Soit I un intervalle compact de \mathbb{R} . Pour $a \in \mathbb{C} \setminus I$, on note $f_a \in \mathcal{C}(I)$ la fonction définie par $f_a(t) := \frac{1}{a-t}$.

- (1) Soit $M := \sup\{|t|; t \in I\}$. Pour a vérifiant |a| > M, développer $f_a(t)$ en série.
- (2) Montrer que si $A \subseteq \mathbb{C}\backslash I$ est un ensemble ou bien non borné, ou bien possèdant un point d'accumulation dans $\mathbb{C}\backslash \overline{D}(0,M)$, alors $\mathrm{Vect}\{f_a;\ a\in A\}$ est dense dans $\mathcal{C}(I)$. (Utiliser l'exercice 30, ou procéder directement).
- (3) Montrer que la conclusion de (2) est encore valable si on suppose seulement que A possède un point d'accumulation dans $\mathbb{C}\backslash I$. (Utiliser l'Exercice 27.)

Exercice 33. Soit $(\alpha_n)_{n\in\mathbb{N}}$ une suite strictement croissante de réels positifs admettant une limite finie, avec $\alpha_0 = 0$. Le but de l'exercice est de montrer que l'espace vectoriel engendré par les fonctions $t \mapsto t^{\alpha_n}$ est dense dans $\mathcal{C}([0,1])$.

- (1) Soit Φ une forme linéaire continue sur $\mathcal{C}([0,1])$. Pour $z \in \mathbb{C}$ vérifiant Re(z) > 0, on pose $G_{\Phi}(z) := \Phi(\mathbf{t}^z)$, où \mathbf{t}^z est la fonction $t \mapsto t^z$ (avec la convention $0^z = 0$). On pose également $G_{\Phi}(0) := \Phi(\mathbf{1})$.
 - (a) Montrer que si $G_{\Phi}(k) = 0$ pour tout $k \in \mathbb{N}$, alors $\Phi = 0$.
 - (b) On note U le demi-plan $\{\text{Re}(z) > 0\}$.
 - (i) Soit $a \in U$. Pour $t \in [0, 1]$, déterminer $\lim_{z \to a} \frac{t^z t^a}{z a}$. Montrer ensuite que cette limite est uniforme par rapport à $t \in [0, 1]$. (Penser par exemple à l'inégalité des accroissements finis.)
 - (ii) Montrer que G_{Φ} est holomorphe sur U.
- (2) Démontrer le résultat souhaité.

Exercice 34. On note $\mathcal{P} \subseteq \mathcal{C}([0,1])$ l'ensemble des fonctions polynomiales. Soient $t_1, \ldots, t_d \in [0,1]$ deux à deux distincts, et $k_1, \ldots, k_d \in \mathbb{N}^*$. On pose

$$\mathcal{E} := \{ P \in \mathcal{P}; \ \forall j \in [1, d] : \ P^{(k_j)}(t_j) = 0 \}.$$

- (1) Soit $K \in \mathbb{N}^*$. Montrer que pour toute fonction $f \in \mathcal{C}^K([0,1])$ et pour tout $\varepsilon > 0$, on peut trouver $P \in \mathcal{P}$ tel que $\forall k \in \{0, \dots, K\} : \|P^{(k)} f^{(k)}\|_{\infty} < \varepsilon$.
- (2) Déduire de (1) que pour tout $j \in [1, d]$ et pour tous $A, \alpha > 0$, on peut trouver $P \in \mathcal{P}$ vérifiant $||P||_{\infty} \leq 1$, $|P^{(k_j)}(t_j)| > A$ et $\forall i \neq j : |P^{(k_i)}(t_i)| < \alpha$.
- (3) Soit Φ une forme linéaire sur $\mathcal{C}([0,1])$ vérifiant $\Phi(P) = 0$ pour tout $P \in \mathcal{E}$.
 - (a) Montrer qu'il existe $\lambda_1, \dots \lambda_d \in \mathbb{K}$ tels que

$$\forall P \in \mathcal{P} : \Phi(P) = \sum_{j=1}^{d} \lambda_j P^{(k_j)}(t_j).$$

- (b) En déduire que si $\Phi \neq 0$, alors Φ n'est pas continue. (*Utiliser* (2)).
- (4) Montrer que \mathcal{E} est dense dans $\mathcal{C}([0,1])$.

Exercice 35. Pour $\alpha < 1/2$, on définit $f_{\alpha} :]0,1[\to \mathbb{R}$ par $f_{\alpha}(t) := t^{-\alpha}$. Montrer que l'espace vectoriel engendré par les fonctions f_{α} est dense dans $L^{2}(]0,1[)$.

Exercice 36. Soit E l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{C}$ de la forme $f(t) = P(t)e^{-t^2}$, où P est un polynôme. Justifier que $E \subseteq L^2(\mathbb{R})$, puis montrer que E est dense dans $L^2(\mathbb{R})$.

Exercice 37. Soit $(X, \|\cdot\|_X)$ un espace vectoriel normé, et soit $C \subseteq X$ un ensemble convexe tel que $0 \in \mathring{C}$. On note p_C la fonctionnelle de Minkowski de C.

- (1) Montrer que si C est borné et symétrique (-C = C), alors p_C est une norme équivalente à la norme $\|\cdot\|_X$.
- (2) On suppose que $C = \{x \in X; N(x) < 1\}$, où N est une norme sur X. Déterminer p_C dans ce cas.

Exercice 38. Soit $(\Omega, \mathfrak{B}, \mathbb{P})$ un espace de probabilité, et soit $X : \Omega \to \mathbb{R}^d$ une variable aléatoire intégrable. Soit également $C \subseteq \mathbb{R}^d$ un ensemble convexe fermé. On suppose que X est presque partout à valeurs dans C. Montrer que $\mathbb{E}(X) \in C$.

Exercice 39. Soit X un \mathbb{R} -espace vectoriel, et soient ϕ_1, \ldots, ϕ_n des formes linéaires sur X. Soient également $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$. On suppose que

$$\forall c_1, \dots, c_n \in \mathbb{R} : \left(\sum_{k=1}^n c_k \phi_k = 0\right) \implies \left(\sum_{k=1}^n c_k \alpha_k = 0\right).$$

Montrer qu'il existe $x \in X$ tel que $\phi_k(x) = \alpha_k$ pour k = 1, ..., n. (Il pourra être utile de considérer l'application linéaire $L: X \to \mathbb{R}^n$ définie par $L(x) := (\phi_1(x), ..., \phi_n(x))$.)

Exercice 40. Soit $d \in \mathbb{N}^*$, et soit $P := \{x \in \mathbb{R}^d; x_i \geq 0 \text{ pour } i = 1, \dots, d\}$. Montrer que si $E \subseteq \mathbb{R}^d$ est un sous-espace vectoriel tel que $E \cap P = \{0\}$, alors $E^{\perp} \cap \mathring{P} \neq \emptyset$. En déduire que pour tout sous-espace vectoriel $E \subseteq \mathbb{R}^d$ tel que $E \cap P = \{0\}$, on peut trouver un hyperplan H tel que $E \subseteq H$ et $H \cap P = \{0\}$.

Exercice 41. Soit X un espace vectoriel normé réel, et soit $C \subseteq X$ un ensemble convexe fermé.

- (1) Soit $(\varphi_i)_{i\in I}$ une famille de fonctions affines sur C, à valeurs réelles, telles que $\sup_{i\in I} \varphi_i(x) < \infty$ pour tout $x \in C$. Montrer que la fonction $\phi := \sup_{i\in I} \varphi_i$ est convexe
- (2) Soit $\phi: C \to \mathbb{R}$ une fonction convexe continue.
 - (a) Montrer que $K := \{(x,t) \in C \times \mathbb{R} : \phi(x) \leq t\}$ est un convexe fermé de $X \times \mathbb{R}$.

(b) Soit $x_0 \in C$. Montrer que pour tout $r < \phi(x_0)$, on peut trouver $x^* \in X^*$ et $\lambda \in \mathbb{R}$ tels que

$$\forall x \in C : \langle x^*, x \rangle + \lambda \phi(x) < \langle x^*, x_0 \rangle + \lambda r.$$

En déduire qu'il existe une fonction affine continue $\varphi_{x_0,r}: C \to \mathbb{R}$ telle que $\varphi_{x_0,r} \leq \phi$ et $\varphi_{x_0,r}(x_0) > r$.

(c) Montrer qu'il existe une famille de fonctions affines continues $(\varphi_i)_{i\in I}$ telle que $\phi = \sup_{i\in I} \varphi_i$.

Exercice 42. (inégalité de Jensen)

Soit X une variable aléatoire intégrable à valeurs dans \mathbb{R}^d . On suppose que X est presque sûrement à valeurs dans un certain convexe fermé $C \subseteq \mathbb{R}^d$. Montrer que si $\phi: C \to \mathbb{R}$ une fonction convexe telle que la v.a. $\phi \circ f$ est intégrable, alors

$$\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X)).$$

(On a $\mathbb{E}(X) \in C$ d'après l'Exercice 38, donc $\phi(\mathbb{E}(X))$ est bien défini. Pour l'inégalité, utiliser l'Exercice 41.)

Exercice 43. (hyperplans d'appui)

Soit E un espace vectoriel normé réel, et soit $C \subseteq E$ un convexe fermé. On dit qu'un hyperplan (affine) fermé $H \subseteq E$ est un **hyperplan d'appui** pour C en un point $a \in \partial C$ si $a \in H$ et si C est entièrement contenu dans l'un des demi-espaces fermés déterminés par H. (Faire un dessin.)

- (1) Soit $a \in \partial C$. Montrer que C possède un hyperplan d'appui au point a si et seulement si il existe une forme linéaire continue non-nulle $\Phi \in E^*$ telle que $\Phi(a) \geqslant \Phi(z)$ pour tout $z \in C$.
- (2) On suppose que C est d'intérieur non-vide dans E. Montrer que $C = \overline{\mathring{C}}$, puis montrer que C possède un hyperplan d'appui en tout point $a \in \partial C$. (Séparer a de \mathring{C}).

Exercice 44. Soit $C = \{z = (z_n)_{\in \mathbb{N}} \in \ell^1(\mathbb{N}); \forall n \in \mathbb{N} : z_n \ge 0\}.$

- (1) Montrer que C est convexe, fermé et d'intérieur vide dans ℓ^1 .
- (2) Soit $a = (a_n) \in \ell^1$ vérifiant $a_n > 0$ pour tout $n \in \mathbb{N}$. Montrer que C ne possède pas d'hyperplan d'appui au point a.

Exercice 45. Soit X un espace vectoriel normé, et soit $C \subseteq X$ un ensemble convexe, fermé et d'intérieur non-vide. Soit également $f: C \to \mathbb{R}$ une fonction convexe continue. Montrer que pour tout point $x_0 \in C$, il existe une forme linéaire continue $x^* \in X^*$ telle que

$$\forall x \in C : f(x) - f(x_0) \geqslant \langle x^*, x - x_0 \rangle.$$

(Observer que $\widetilde{C} := \{(x,t) \in C \times \mathbb{R}; \ t \geqslant f(x)\}$ est d'intérieur non-vide dans $X \times \mathbb{R}$, puis utiliser l'exercice 43).

Exercice 46. Soient X un espace vectoriel normé réel et K un compact convexe de X. Soient également $f: K \to \mathbb{R}$ et $g: K \to \mathbb{R}$ deux fonctions continues. On suppose que f est convexe, que g est concave, et qu'on a g(x) < f(x) pour tout $x \in K$. Le but de l'exercice est de montrer qu'il existe une fonction affine continue $\phi: K \to \mathbb{R}$ telle que $g < \phi < f$. (Faire un dessin.)

- (1) Montrer que les ensembles $C_f := \{(x, \lambda) \in K \times \mathbb{R}; \ f(x) \leqslant \lambda \leqslant ||f||_{\infty}\}$ et $C_g := \{(y, \mu) \in K \times \mathbb{R}; \ -||g||_{\infty} \leqslant \mu \leqslant g(y)\}$ sont des convexes compacts de $X \times \mathbb{R}$.
- (2) Montrer qu'il existe $z^* \in X^*$, $a \in \mathbb{R}$ et une constante c tels que $\forall x \in K : \langle z^*, x \rangle + ag(x) < c < \langle z^*, x \rangle + af(x)$.
- (3) Montrer que a > 0, puis démontrer le résultat souhaité.

Exercice 47. Soit X un espace vectoriel normé réel, et soient $A, B \subseteq X$ deux ensembles convexes fermés. On suppose que A et B sont à distance strictement positive, i.e dist $(A, B) := \inf \{ \|v - u\|; (u, v) \in A \times B \} > 0$. Montrer qu'il existe $\Phi \in X^*$ qui sépare strictement A et B. (Montrer qu'il existe un voisinage de 0 ouvert et convexe V tel que $A \cap (B + V) = \emptyset$, et considérer l'ouvert convexe $\Omega := (B + V) - A$.)

Exercice 48. Soit X un espace vectoriel normé de dimension finie, et soit $A, B \subseteq X$ deux ensembles convexes tels que $A \cap B = \emptyset$. On ne fait pas d'hypothèse supplémentaire sur A et B. Le but de l'exercice est de montrer qu'on peut quand même "séparer au sens large" A et B par un hyperplan, i.e. qu'il existe une forme linéaire (continue) $x^* \in X^*$ telle que inf $\{\langle x^*, u \rangle; u \in A\} \ge \sup\{\langle x^*, v \rangle; v \in A\}$.

- (1) Dans cette question, on suppose que $A = \{0\}$, et donc que $0 \notin B$.
 - (a) Montrer qu'il existe une suite croissante $(K_n)_{n\in\mathbb{N}}$ de convexes compacts avec $K_n\subseteq B$ pour tout n, telle que $\bigcup_{n\in\mathbb{N}}K_n$ est dense dans B. (Utiliser le fait que B est séparable.)
 - (b) Montrer que pour tout $n \in \mathbb{N}$, on peut trouver $x_n^* \in X^*$ telle que $||x_n^*|| = 1$ et $\forall x \in K_n : \langle x_n^*, x \rangle \leq 0$.
 - (c) Montrer qu'on peut séparer $\{0\}$ et B par un hyperplan.
- (2) Démontrer le résultat souhaité pour des convexes A et B quelconques.

Exercice 49. Soit X un espace vectoriel normé réel de dimension infinie.

- (1) Montrer qu'il existe des formes linéaires non continues sur X. (Soit $(e_n)_{n\in\mathbb{N}}$ une suite de vecteurs linéairement indépendants dans X, avec $||e_n|| = 1$. "Construire" une forme linéaire Φ telle que $\Phi(e_n) = n$ pour tout n.)
- (2) Soit Φ une forme linéaire non continue sur X. Montrer que pour tout $\alpha \in \mathbb{K}$, l'ensemble $H_{\alpha} := \{x \in X; \ \Phi(x) = \alpha\}$ est dense dans X; et en déduire que si $\Psi: X \to \mathbb{R}$ est une forme linéaire *continue*, alors $\Psi(H_{\alpha}) = \mathbb{R}$.
- (3) Montrer qu'on peut touver deux convexes disjoints $H, H' \subseteq X$ qui ne peuvent pas être séparés (strictement) par un hyperplan fermé.

Exercice 50. Dans l'espace $X := c_0(\mathbb{N})$ ou $\ell^p(\mathbb{N})$, $1 \leq p < \infty$, on considère

$$E := \{ x \in X; \ \forall i \in \mathbb{N} : x_{2i} = 0 \}$$
 et $F := \{ x \in X; \ \forall i \ge 1 : x_{2i} = 10^{-i} x_{2i-1} \}.$

- (1) Montrer que E et F sont des sous-espaces fermés de X, que E+F est dense dans X, et que $E+F \neq X$. (Pour la dernière propriété, on pourra considérer le point $z \in X$ défini par $z_{2i} := 10^{-i}$ pour tout $i \geq 0$ et $z_{2i-1} := 0$ pour tout $i \geq 1$.)
- (2) Soit $z \in X \setminus (E + F)$. Montrer que A := z E et B := F sont des convexes fermés de X tels que $A \cap B = \emptyset$, mais qu'on ne peut pas séparer (strictement) A et B par un hyperplan fermé.

Exercice 51. Dans tout l'exercice, X est un espace vectoriel normé réel, et K est un compact convexe non vide de X. Enfin, $f: K \to K$ est une application affine continue. Le but de l'exercice est de montrer que f possède un point fixe.

- (1) On pose $\Delta := \{(u, u); u \in K\}$, et on note G le graphe de f. Montrer que Δ et G sont des compacts convexes de $X \times X$.
- (2) Montrer que si Φ est une forme linéaire continue sur $X \times X$, alors on peut trouver $(\phi_1, \phi_2) \in X^* \times X^*$ tel que

$$\forall (u,v) \in X \times X : \Phi(u,v) = \phi_1(u) + \phi_2(v).$$

- (3) On suppose que f ne possède pas de point fixe.
 - (a) Montrer qu'il existe deux formes linéaires $\phi_1, \phi_2 \in X^*$ et deux nombres réels $\alpha < \beta$ tels que

$$\forall u, v \in K : \phi_1(u) + \phi_2(u) \leqslant \alpha < \beta \leqslant \phi_1(v) + \phi_2(f(v))$$

- (b) Montrer qu'on a $\phi_2(f^n(x)) \phi_2(x) \ge n(\beta \alpha)$ pour tout $x \in K$ et pour tout $n \in \mathbb{N}^*$. (Bien sûr, $f^n = f \circ \cdots \circ f$.)
- (4) Conclure.

Exercice 52. (Théorème de Krein-Milman dans un evn)

Dans tout l'exercice, X est un espace vectoriel normé réel, et K est un compact convexe non-vide de X. On dit qu'un point $x \in K$ est un **point extrémal** de K si x ne peut pas s'écrire comme barycentre de deux points de K différents de x; autrement dit : si $u, v \in K$ et $x \in [u, v]$, alors u = x ou v = x. Le but de l'exercice est de montrer que K est l'enveloppe convexe fermée de ses points extrémaux.

- (0) Vérifier que le résultat est bien vrai lorsque K est un rectangle, un triangle ou un disque dans le plan.
- (1) On dit qu'un ensemble $E \subseteq K$ est une **partie extrémale** de K s'il possède la propriété suivante : si $u, v \in K$ et $]u, v[\cap E \neq \emptyset,$ alors $u \in E$ et $v \in E$. On note \mathcal{E} l'ensemble des parties extrémales de K compactes et non-vides. Montrer que \mathcal{E} contient un élément minimal pour l'inclusion.
- (2) Montrer que si E est une partie extrémale de K et si $\phi: X \to \mathbb{R}$ est une forme linéaire continue, alors

$$E_{\phi} := \left\{ x \in E; \ \phi(x) = \sup_{E} \phi \right\}$$

est une partie extrémale de K.

- (3) Déduire de (1) et (2) que K possède au moins un point extrémal.
- (4) Soit $\phi: X \to \mathbb{R}$ une forme linéaire continue. Montrer que l'ensemble K_{ϕ} est un compact convexe non-vide, et que tout point extrémal de K_{ϕ} est un point extrémal de K.
- (5) Soit K_0 un compact convexe de K, avec $K_0 \neq K$. Montrer qu'il existe une forme linéaire $\phi \in X^*$ telle que $K_\phi \cap K_0 = \emptyset$.
- (6) Démontrer le résultat souhaité.

Exercice 53. Soit $d \in \mathbb{N}^*$. En utilisant le Théorème de Krein-Milman (*Exercice 52*), montrer que toute matrice $A \in M_d(\mathbb{R}) = \mathcal{L}(\mathbb{R}^d)$ vérifiant $||A|| \leq 1$ est combinaison convexe de matrices orthogonales.

Exercice 54. (Banach-Steinhaus sans Baire)

Le but de l'exercice est de donner une preuve du théorème de Banach-Steinhaus qui n'utilise pas le théorème de Baire. Soit donc $(T_i)_{i\in I}$ une famille d'application linéaires continues d'un espace de Banach X dans un espace vectoriel normé Y. On raisonne par l'absurde en supposant qu'on a $\sup_{i\in I} \|T_i(x)\| < \infty$ pour tout $x\in X$, mais cependant $\sup_{i\in I} \|T_i\| = \infty$.

(1) Montrer que pour tout $\alpha > 0$ et pour tout $A < \infty$, on peut trouver $x \in X$ et $i \in I$ tels que $||x|| \le \alpha$ et $||T_i(x)|| > A$.

- (2) Pour $x \in X$, on pose $C(x) = \sup_{i \in I} ||T_i(x)||$. Montrer qu'on peut construire par récurrence une suite $(x_n)_{n \in \mathbb{N}} \subseteq X$ et une suite $(i_n)_{n \in \mathbb{N}} \subseteq I$ telles que les propriétés suivantes soient vérifiées :
 - (i) $||x_n|| \leq 2^{-n}$ pour tout $n \in \mathbb{N}$;
 - (ii) $||T_{i_k}(x_n)|| \le 2^{-n}$ pour tout n et pour tout k < n;
 - (iii) $||T_{i_n}(x_n)|| > n + 1 + \sum_{k < n} C(x_k)$ pour tout n.
- (3) On pose $x = \sum_{l=0}^{\infty} x_l$. Justifier la définition, puis montrer que pour tout $m \in \mathbb{N}$, on a $||T_{i_m}(x)|| > m$.
- (4) Conclure.

Exercice 55. Dans cet exercice, on note X l'espace vectoriel normé $(\mathcal{C}([0,1]), \|\cdot\|_2)$.

- (1) Pour $c \in \mathbb{C}$ et $0 \leq a \leq b \leq 1$, on note $\Phi_{a,b,c} : X \to \mathbb{C}$ la forme linéaire définie par $\Phi_{a,b,c}(f) := c \int_a^b f(t) dt$. Montrer que $\Phi_{a,b,c}$ est continue.
- (2) Soient (c_n) une suite de nombres complexes et (a_n) , (b_n) deux suites dans [0,1]. Pour $n \in \mathbb{N}$, on pose $\Phi_n := \Phi_{a_n,b_n,c_n}$.
 - (a) Montrer que la suite (Φ_n) est simplement bornée si et seulement si $\sup_{n\in\mathbb{N}}|c_n|\,(b_n-a_n)<\infty.$
 - (b) Montrer que la suite (Φ_n) est bornée en norme si et seulement si $\sup_{n\in\mathbb{N}}|c_n|\sqrt{b_n-a_n}<\infty.$

Exercice 56. Soient X un espace de Banach, Y un espace vectoriel normé, et $(T_n)_{n\in\mathbb{N}}$ une suite dans $\mathcal{L}(X,Y)$. Montrer que la suite (T_n) est bornée si et seulement si : pour toute suite $(x_n) \subseteq X$ telle que $x_n \to 0$, on a que $T_n x_n \to 0$.

Exercice 57. Soit $(\Omega, \mathfrak{B}, m)$ un espace mesuré sigma-fini, et soit $(\phi_n)_{n \in \mathbb{N}}$ une suite dans $L^{\infty}(\Omega, m)$. On suppose que pour toute suite $(f_n) \subseteq L^2(\Omega, m)$ telle que $||f_n||_2 \to 0$, on a que $||\phi_n f_n||_2 \to 0$. Montrer que la suite (ϕ_n) est bornée dans $L^{\infty}(\Omega, m)$.

Exercice 58. Soient X et Y deux espaces de Banach, et soit $(T_n)_{n\in\mathbb{N}}$ une suite dans $\mathcal{L}(X,Y)$. Montrer que la suite (T_n) est bornée si et seulement si : pour toute suite $(x_n) \subseteq X$ telle que $\sum_{n=0}^{\infty} \|x_n\| < \infty$, la série $\sum T_n x_n$ est convergente

Exercice 59. Soit $a = (a_n)_{n \in \mathbb{N}}$ une suite de nombres complexes. On supose que a vérifie la propriété suivante : pour toute suite $x = (x_n) \in c_0$, la série $\sum a_n x_n$ est convergente.

- (1) Pour $N \in \mathbb{N}$, on définit une forme linéaire $\Phi_N : c_0 \to \mathbb{C}$ par $\Phi_N(x) = \sum_{n=0}^N a_n x_n$. Montrer que Φ_N est continue et calculer $\|\Phi_N\|$.
- (2) Montrer que $a \in \ell^1$.

Exercice 60. Soit $a = (a_n)_{n \in \mathbb{N}}$ une suite de nombres complexes, et soit $1 \leq p < \infty$. On supose que pour toute suite $x = (x_n) \in \ell^p$, la série $\sum a_n x_n$ est convergente. Montrer que $a \in \ell^q$, où q est l'exposant conjugué de p.

Exercice 61. Soit X un espace de Banach, et soit $(x_n^*)_{n\in\mathbb{N}}$ une suite dans X^* . Montrer que les propriétés suivantes sont équivalentes :

- (i) Pour toute suite $(x_n) \subseteq X$ telle que $x_n \to 0$, la série $\sum \langle x_n^*, x_n \rangle$ est convergente;
- (ii) $\sum_{n=0}^{\infty} \|x_n^*\| < \infty.$

(Pour une implication, on pourra considérer l'espace de Banach $c_0(\mathbb{N}, X)$ et les formes linéaires $\Phi_N \in (c_0(\mathbb{N}, X))^*$ définies par $\Phi_N(x) := \sum_{n=0}^N \langle x_n^*, x_n \rangle$.)

Exercice 62. Soit X un espace de Banach, et soit $(x_n^*)_{n\in\mathbb{N}}$ une suite dans X^* . Soit également 1 , et soit <math>q l'exposant conjugué. Montrer que les propriétés suivantes sont équivalentes :

- (i) Pour toute suite $(x_n) \subseteq X$ telle que $\sum_{n=0}^{\infty} ||x_n||^p < \infty$, la série $\sum \langle x_n^*, x_n \rangle$ est convergente;
- (ii) $\sum_{n=0}^{\infty} ||x_n^*||^q < \infty$.

Exercice 63. Soit X un espace de Banach, et soit $(x_n^*)_{n\in\mathbb{N}}$ une suite dans X^* . On suppose qu'il existe r>0 et une suite $(\varepsilon_n)\subseteq\mathbb{R}^+$ tendant vers 0 tels que la chose suivante ait lieu : pour tout $x\in B(0,r)$, il existe une constante $C_x<\infty$ telle que $\forall n\in\mathbb{N}: \langle x_n^*, x\rangle\leqslant \varepsilon_n\,\|x_n^*\|+C_x$. Montrer que la suite (x_n^*) est bornée.

Exercice 64. Soient X et Y deux espaces vectoriels normés, et soit $T: X \to Y$ une application linéaire. On suppose que pour toute $y^* \in Y^*$, l'application $x \mapsto \langle y^*, Tx \rangle$ est continue.

- (1) Pour tout $x \in X$, on note $\Phi_x : Y^* \to \mathbb{K}$ la forme linéaire définie par $\Phi_x(y^*) = \langle y^*, T(x) \rangle$. Montrer que les Φ_x sont continues et que pour tout $y^* \in Y^*$ fixé, on a $\sup_{x \in B_X} |\Phi_x(y^*)| < \infty$.
- (2) Montrer que T est continue.

Exercice 65. Soit H un espace de Hilbert, et soit $T: H \to H$ une application linéaire. On suppose que pour tout $y \in H$, l'application $x \mapsto \langle Tx, y \rangle$ est continue. Montrer que T est continue.

Exercice 66. Soient K un espace métrique compact, X est un espace de Banach et $L: X \to \mathcal{C}(K)$ une application linéaire. On suppose que pour tout $t \in K$, l'application $x \mapsto (Lx)(t)$ est continue. Montrer que L est continue.

Exercice 67. Soient (E, d) un espace métrique, X un espace vectoriel normé et $f: E \to X$. On suppose que pour toute forme linéaire continue $x^* \in X^*$, l'application $t \mapsto \langle x^*, f(t) \rangle$ est lipschitzienne. Montrer que f est lipschitzienne.

Exercice 68. Soient X, Y, Z des espace vectoriel normé. On dit qu'une application $B: X \times Y \to Z$ est **séparément continue** si pour tout $u \in X$ fixé, l'application $v \mapsto B(u,v)$ est continue, et pour tout $v \in Y$ fixé, l'application $u \mapsto B(u,v)$ est continue.

- (1) Dans cette question, on suppose que X est complet. Soit $B: X \times Y \to Z$ une application bilinéaire et séparément continue.
 - (a) Pour tout $v \in Y$, on note $B_v \in \mathcal{L}(X, Z)$ l'application linéaire définie par $B_v(u) := B(u, v)$. Montrer que la famille $\{B_v; \|v\| \leq 1\}$ est bornée dans $\mathcal{L}(X, Z)$.
 - (b) Montrer que B est continue.
- (2) Dans cette question, on prend $X := \mathcal{C}([0,1]) = Y$, muni de la norme L^1 . Soit $B : \mathcal{C}([0,1]) \times \mathcal{C}([0,1]) \to \mathbb{R}$ la forme bilinéaire définie par

$$B(u,v) := \int_0^1 u(t)v(t) dt.$$

- (a) Montrer que B est séparément continue.
- (b) Pour $n \in \mathbb{N}$, on note $u_n \in \mathcal{C}([0,1])$ la fonction $t \mapsto t^n$. Calculer $B(u_n, u_n)$ et $||u_n||$. Que peut-on en déduire?

Exercice 69. Soit Ω un ouvert de \mathbb{C} et soit $f:\Omega\to X$, où X est un espace de Banach complexe. On suppose que la fonction f est **faiblement holomorphe**, ce qui signifie que $x^*\circ f$ est holomorphe pour toute $x^*\in X^*$. Le but de l'exercice est de montrer que f est holomorphe.

- (1) Soit $D \subseteq \mathbb{C}$ un disque ouvert tel que $\overline{D} \subseteq \Omega$. Montrer que pour toute $x^* \in X^*$, la fonction $x^* \circ f$ est lipschitzienne sur \overline{D} .
- (2) Déduire de (1) que la fonction f est continue.

(3) Montrer que si D est un disque ouvert tel que $\overline{D} \subseteq \Omega$, alors

$$\forall z \in D : f(z) = \frac{1}{2i\pi} \int_{\partial D} \frac{f(\xi)}{\xi - z} d\xi.$$

(L'intégrale curviligne "vectorielle" du 2ème membre est bien définie grâce à (2).)

(4) Conclure.

Exercice 70. (matrices de sommation)

On dira qu'une matrice infinie $(c_{i,j})_{i,j\in\mathbb{N}}$ à coefficients complexes est une bonne matrice de sommation si elle vérifie la propriété suivante : pour toute suite numérique (x_j) admettant une limite l, toutes les séries $\sum c_{i,j} x_j$ convergent, et $\lim_{i\to\infty} \sum_{0}^{\infty} c_{i,j} x_j = l$.

- (1) Soit $(c_{i,j})_{i,j\in\mathbb{N}}$ une matrice vérifiant les conditions suivantes (qu'on appelle conditions de Toeplitz) :
 - (a) $\sup_{i \in \mathbb{N}} \sum_{j=0}^{\infty} |c_{i,j}| < \infty$;
 - (b) $\lim_{i \to \infty} \sum_{j=0}^{\infty} c_{i,j} = 1;$
 - (c) $\lim_{i \to \infty} c_{i,j} = 0$ pour tout $j \in \mathbb{N}$.

Montrer que $(c_{i,j})$ est une bonne matrice de sommation.

- (2) Montrer que (1) permet de retrouver le théorème de Cesàro et le théorème d'Abel sur les séries entières.
- (3) Montrer que toute bonne matrice de sommation vérifie (a), (b), (c).

Exercice 71. (une série de Fourier divergente)

Dans cet exercice, on donne un exemple explicite de fonction dont la série de Fourier diverge en 0.

(1) Pour u, v > 0, on pose

$$K(u,v) = \frac{1}{\pi} \int_0^{\pi} \frac{\sin(u\theta) \sin(v\theta)}{\sin(\theta/2)} d\theta.$$

Montrer qu'il existe des constantes a>0 et $b<\infty$ telles que

$$|K(u, v)| \le b \log(u)$$
 pour $2 \le u \le v$,
 $K(u, u) \ge a \log(u)$ pour tout $u \ge 2$.

(2) On définit $f: \mathbb{R} \to \mathbb{R}$ par

$$f(\theta) = \sum_{k=1}^{\infty} (k!)^{-1/2} \sin \left[(2^{k!} + 1/2) |\theta| \right].$$

- (a) Vérifier que $f \in \mathcal{C}_{2\pi}$.
- (b) Pour $n \in \mathbb{N}$, exprimer $S_{2^{n!}}f(0)$ à l'aide de la fonction K.
- (c) Montrer que la série de Fourier de f diverge en 0.

Exercice 72. (interpolation de Lagrange)

Pour $n \in \mathbb{N}$, on note $\mathcal{P}_n \subseteq \mathcal{C}([0,1])$ l'ensemble des fonctions polynomiales de degré inférieur ou égal à n, à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Si $n \geq 1$, on pose $x_i^{(n)} := \frac{i}{n}$ pour $i = 0, \ldots, n$; et pour $f \in \mathcal{C}([0,1])$, on note $\pi_n f$ le **polynôme d'interpolation de Lagrange** pour f aux points $x_0^{(n)}, \ldots, x_n^{(n)}$, *i.e.* l'unique $P \in \mathcal{P}_n$ tel que $P(x_i^{(n)}) = f(x_i^{(n)})$ pour $i = 0, \ldots, n$.

- (1) Montrer que l'application $\pi_n: \mathcal{C}([0,1]) \to \mathcal{P}_n$ est une projection.
- (2) Soit $n \in \mathbb{N}$. Pour $i \in \{0, ..., n\}$, on définit $l_i^n \in \mathcal{P}_n$ par la formule

$$l_i^n(x) = \prod_{j \neq i} \frac{x - x_j^{(n)}}{x_i^{(n)} - x_j^{(n)}}.$$

- (a) Vérifier que si $f \in \mathcal{C}([0,1])$, alors $\pi_n f = \sum_{i=0}^n f(x_i^{(n)}) l_i^{(n)}$.
- (b) En déduire que la projection π_n est continue
- (c) On pose $\lambda_n(x) := \sum_{i=0}^n |l_i^{(n)}(x)|$, et $\Lambda_n := \|\lambda_n\|_{\infty}$. Calculer $\|\pi_n\|$ en fonction de Λ_n .
- (3) Montrer que si $n \in \mathbb{N}^*$, alors $\prod_{j=0}^n |\frac{1}{2} j| \ge \frac{1}{4}(n-1)!$. En déduire que pour tout $i \in \{0, \dots, n\}$, on a $|l_i^{(n)}(\frac{1}{2n})| \ge \frac{1}{4n^2}\binom{n}{i}$, puis montrer que $\Lambda_n \to \infty$ quand $n \to \infty$.
- (4) Est-il vrai que pour toute fonction $f \in \mathcal{C}([0,1])$, la suite $(\pi_n f)$ converge uniformément vers f?

Exercice 73. On garde les notations de l'Exercice 72.

(1) Montrer que si $f \in \mathcal{C}([0,1])$, alors

$$\forall n \in \mathbb{N} : ||f - \pi_n(f)||_{\infty} \leq (1 + \Lambda_n) \operatorname{dist}(f, \mathcal{P}_n).$$

(2) On admet qu'on a $\Lambda_n \leq 2^n$ pour tout $n \in \mathbb{N}$. Montrer que si $f \in \mathcal{C}([0,1])$ est la somme d'une série entière de rayon de convergence R > 2, alors la suite $(\pi_n f)$ converge uniformément vers f.

Exercice 74. (quotients de ℓ^1)

(1) Soit X un espace de Banach. Montrer que pour toute suite bornée $(z_n) \subseteq X$, il existe un opérateur borné $T: \ell^1(\mathbb{N}) \to X$ tel que $\forall n \in \mathbb{N}: Te_n = z_n$, où $(e_n)_{n \in \mathbb{N}}$ la "base canonique" de $\ell^1(\mathbb{N})$.

(2) On suppose que l'espace de Banach X est séparable. Déduire de (1) que X est un quotient de $\ell^1(\mathbb{N})$; autrement dit, qu'il existe une surjection linéaire continue de $\ell^1(\mathbb{N})$ sur X.

Exercice 75. (Théorème d'extension de Tietze)

Soit (M,d) un espace métrique, et soit K un fermé de M. Le but de l'exercice est de démontrer le résultat suivant : pour toute fonction continue bornée $\varphi: K \to \mathbb{R}$, il existe une fonction continue bornée $f: M \to \mathbb{R}$ telle que $f_{|K} = \varphi$.

- (1) On note $C_b(M)$ l'espace des fonctions continues bornées sur M (à valeurs réelles), muni de la norme $\|\cdot\|_{\infty}$, et on définit de même l'espace $C_b(K)$. Enfin, on note $R: C_b(E) \to C_b(K)$ l'opérateur de restriction, $Rf := f_{|K|}$. Comment s'exprime le résultat à démontrer en termes de l'opérateur R?
- (2) Montrer que si K_0 et K_1 sont des fermés de M vérifiant $K_0 \cap K_1 = \emptyset$, alors il existe une fonction continue $\chi : M \to [0,1]$ telle que $\chi \equiv 0$ sur K_0 et $\chi \equiv 1$ sur K_1 .
- (3) En déduire que si $\varphi: K \to \mathbb{R}$ est continue, alors il existe une fonction continue $f: M \to [-1, 1]$ telle que

$$f(x) = \begin{cases} 1 & \text{si } x \in K \text{ et } \varphi(x) \geqslant 2/3\\ 0 & \text{si } x \in K \text{ et } -1/3 \leqslant \varphi(x) \leqslant 1/3\\ -1 & \text{si } x \in K \text{ et } \varphi(x) \leqslant -2/3 \end{cases}$$

Montrer que si φ est à valeurs dans [-1,1], alors $|f(x)-\varphi(x)| \leq 2/3$ pour tout $x \in K$.

(4) Démontrer le résultat souhaité.

Exercice 76. Soit $(X_n)_{n\in\mathbb{N}}$ une suite d'espaces de Banach, soit Y un espace de Banach, et pour tout $n\in\mathbb{N}$, soit $T_n\in\mathcal{L}(X_n,Y)$. On suppose qu'on a $\bigcup_{n\in\mathbb{N}}\operatorname{Im}(T_n)=Y$. Montrer que l'un au moins des opérateurs T_n est surjectif.

Exercice 77. Soient X et Y des espaces de Banach, et soit $T \in \mathcal{L}(X,Y)$ un opérateur surjectif. Montrer que si A est une partie quelconque de X, alors T(A) est fermé dans Y si et seulement si $A + \ker(T)$ est fermé dans X. En déduire que si $\ker(T)$ est de dimension finie, alors T(E) est fermé dans Y pour tout sous-espace (vectoriel) fermé $E \subseteq X$.

Exercice 78. Soit X un espace de Banach. Montrer que si $T: X \to \ell^1(\mathbb{N})$ est un opérateur surjectif, alors T possède un inverse à droite, *i.e.* il existe un opérateur $S \in \mathcal{L}(\ell^1(\mathbb{N}), X)$ tel que TS = I.

Exercice 79. Soient X et Y des espaces de Banach, et soit $T \in \mathcal{L}(X,Y)$. Montrer que T est à image fermée si et seulement si il existe une constante c > 0 telle que $\forall x \in X : ||Tx|| \ge c \operatorname{dist}(x, \ker(T))$.

Exercice 80. Soient X_1, X_2 et Y des espaces de Banach, $T_1 \in \mathcal{L}(X_1, Y)$ et $T_2 \in \mathcal{L}(X_2, Y)$. On suppose que $Y = \operatorname{Im}(T_1) \oplus \operatorname{Im}(T_2)$. Montrer que T_1 et T_2 sont à images fermées. (*Utiliser l'Exercice* 79.)

Exercice 81. Soit X un espace de Banach, et soient E et F deux sous-espaces fermés de X. On suppose qu'il existe une constante c > 0 telle que $\forall x \in E$: $\operatorname{dist}(x, F) \ge c \operatorname{dist}(x, E \cap F)$. Montrer que E + F est fermé dans X.

Exercice 82. Soient $(X, \|\cdot\|_X)$ et $(Y, \|\cdot\|_Y)$ deux espaces de Banach, et soit $T \in \mathcal{L}(X,Y)$ tel que $\mathrm{Im}(T)$ est fermé dans X et $\dim \ker(T) < \infty$. Soit également $\|\cdot\|$ une autre norme sur X, qu'on suppose $\operatorname{domin\acute{e}e}$ par $\|\cdot\|_X$, i.e. $\|\cdot\| \leqslant M \|\cdot\|_X$ pour une certaine constante $M < \infty$. Montrer qu'il existe une constante $C < \infty$ telle que

$$\forall x \in X : ||x||_X \leqslant C (||Tx||_Y + |||x||).$$

(Le plus simple est probablement de raisonner par l'absurde.)

Exercice 83. (non-surjectivité de Fourier, directement)

Dans cet exercice, on veut montrer par un argument direct que la transformation de Fourier $\mathcal{F}: L^1(\mathbb{R}) \to \mathcal{C}_0(\mathbb{R})$ n'est pas surjective.

- (1) Montrer que si f est une fonction impaire intégrable sur \mathbb{R} , alors $\widehat{f}(x) = -2i\int_0^\infty \sin(2\pi tx)f(t)\,dt$ pour tout $x\in\mathbb{R}$. En déduire que $\int_1^X \frac{\widehat{f}(x)}{x}\,dx$ admet une limite quand $X\to\infty$.
- (2) Montrer que si $f \in L^1(\mathbb{R})$ et si \hat{f} est impaire, alors f est impaire.
- (3) Donner un exemple explicite de fonction $g \in \mathcal{C}_0(\mathbb{R})$ qui n'est pas dans l'image de \mathcal{F} .

Exercice 84. Soient X et Y deux espaces de Banach, et soit $T: X \to Y$ linéaire continue. On suppose que $\operatorname{Im}(T)$ est complémenté dans Y, autrement dit qu'il existe un sous-espace fermé $E \subseteq Y$ tel que $Y = E \oplus \operatorname{Im}(T)$.

- (1) En utilisant convenablement le théorème de l'image ouverte, montrer qu'il existe une constante C telle que la propriété suivante ait lieu : pour tout $y \in \text{Im}(T)$, il existe $x \in X$ tel que T(x) = y et $||x|| \leq C ||y||$. (Considérer l'application $L: X \times E \to Y$ définie par L(x, f) := f + T(x).)
- (2) En déduire que toute série normalement convergente à termes dans Im(T) converge dans Im(T).

(3) Conclure que Im(T) est fermé dans Y.

Exercice 85. (bases de Schauder)

Soit $(X, \|\cdot\|)$ un espace de Banach sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On dit qu'une suite $(e_i)_{i \in \mathbb{N}} \subseteq X$ d'éléments de X est une **base de Schauder** pour X si, pour tout $x \in X$, il existe une unique suite $(x_i) \in \mathbb{K}^{\mathbb{N}}$ telle que $x = \sum_{i=0}^{\infty} x_i e_i$, où la série converge dans X. Dans tout l'exercice, on fixe une base de Schauder (e_i) pour X.

(1) Pour $n \in \mathbb{N}$, on définit une application linéaire $\pi_n : X \to X$ par

$$\pi_n \left(\sum_{i=0}^{\infty} x_i e_i \right) = \sum_{i=0}^n x_i e_i .$$

Montrer que les π_n sont des projections.

- (2) Pour $x \in X$, on pose $||x|| = \sup_{n \in \mathbb{N}} ||\pi_n(x)||$.
 - (a) Montrer que $\|\cdot\|$ est une norme sur X.
 - (b) Soit $(x_k)_{k\in\mathbb{N}}\subseteq X$ une suite de Cauchy pour la norme $\|\cdot\|$. Montrer que pour tout $n\in\mathbb{N}$, la suite $(\pi_n(x_k))_{k\in\mathbb{N}}$ converge (au sens de la norme originelle de X) vers un point $z_n\in X$, et que la suite (z_n) converge vers un point $x\in X$. Montrer ensuite que si $n\leqslant m$, alors $\pi_n(z_m)=z_n$, puis que $\pi_n(x)=z_n$ pour tout $n\in\mathbb{N}$.
 - (c) Montrer que l'espace $(X, \| \cdot \|)$ est complet.
 - (d) Montrer que $\|\cdot\|$ est équivalente à la norme originelle de X.
- (3) Conclure que toutes les projections π_n sont continues, et qu'on a

$$\sup_{n\in\mathbb{N}}\|\pi_n\|<\infty.$$

Exercice 86. Soit $X := c_0(\mathbb{N})$ ou $\ell^p(\mathbb{N})$, $1 \leq p < \infty$. Montrer que la "base canonique" de X est une base de Schauder de X.

Exercice 87. Soient X et Y deux espaces de Banach. On suppose que Y possède une base de Schauder. Montrer que tout opérateur compact $T: X \to Y$ est limite d'une suite d'opérateurs de rangs finis.

Exercice 88. Soit X un espace de Banach. On suppose qu'il existe une suite de projections continue $\pi_n: X \to X$ vérifiant les propriétés suivantes :

- (i) π_n est de rang n+1 pour tout $n \in \mathbb{N}$;
- (ii) $\pi_{n+1}\pi_n = \pi_n = \pi_n\pi_{n+1}$;
- (iii) $\pi_n x \to x$ pour tout $x \in X$.

- (1) Montrer que $\operatorname{Im}(\pi_n) \cap \ker(\pi_{n-1})$ est de dimension 1 pour tout $n \ge 1$.
- (2) Montrer que X possède une base de Schauder. (Choisir un vecteur non-nul $e_0 \in \text{Im}(\pi_0)$ et, pour tout $n \ge 1$, un vecteur non-nul $e_n \in \text{Im}(\pi_n) \cap \text{ker}(\pi_{n-1})$.)

Exercice 89. Le but de cet exercice est de montrer que l'espace de Banach $X := \mathcal{C}([0,1],\mathbb{R})$ possède une base de Schauder.

- (1) Soient $t_0, \ldots, t_n \in [0, 1[$ deux à deux distincts, avec $t_0 = 0$. Pour $f \in X$, on note $\pi(f)$ l'unique fonction continue interpolant f aux points $t_0, \ldots, t_n, 1$ et affine par morceaux avec "noeuds" $0 = t_0, \ldots, t_n, 1$. Montrer que $\pi: X \to X$ est une projection linéaire continue et calculer $\|\pi\|$.
- (2) Conclure en utilisant l'Exercice 88.

Exercice 90. Soient X et Y deux espaces métriques, et soit $f: X \to Y$. Montrer que si le graphe de f est compact, alors f est continue.

Exercice 91. Soient X et Y deux espaces vectoriels normés, et soit $T: X \to Y$ une application linéaire. Montrer que les propriétés suivantes sont équivalentes :

- (i) Le graphe de T est fermé dans $X \times Y$.
- (ii) Pour toute suite $(x_n) \subseteq X$ convergeant vers 0 telle que la suite (Tx_n) est convergente, on a $\lim_{n\to\infty} T(x_n) = 0$.

Exercice 92. Déduire le Théorème d'isomorphisme de Banach du Théorème du graphe fermé.

Exercice 93. Soit $J: (\mathcal{C}([0,1]), \|\cdot\|_{L^1}) \to \mathcal{C}([0,1], \|\cdot\|_{\infty})$ l'application linéaire définie par J(f) = f. L'application J est-elle continue? Le graphe de J est-il fermé?

Exercice 94. Soit X un espace de Banach, et soit $p: X \to X$ une projection, *i.e.* une application linéaire telle que $p^2 = p$. Montrer que p est continue si et seulement si $\ker(p)$ et $\operatorname{Im}(p)$ sont fermés dans X.

Exercice 95. Soit H un espace de Hilbert, et soit $T: H \to H$ une application linéaire. On suppose qu'on a $\langle T(x), x \rangle \ge 0$ pour tout $x \in H$.

- (1) Soit (z_n) une suite de points de H vérifiant $\lim_{n\to\infty} z_n = 0$. On suppose que la suite $(T(z_n))$ converge vers un point $l \in H$.
 - (a) Montrer qu'on a $\langle l, h \rangle + \langle T(h), h \rangle \ge 0$ pour tout $h \in H$.
 - (b) En déduire que l = 0. (Remplacer h par εh , avec $\varepsilon > 0$).
- (2) Montrer que l'application linéaire T est continue.

Exercice 96. Soit $(\Omega, \mathfrak{B}, m)$ un espace mesuré, et soit $(f_n)_{n \in \mathbb{N}}$ une suite dans $L^1(\Omega, m)$. On suppose que pour presque tout $x \in \Omega$, on a $\sup_{n \in \mathbb{N}} |f_n(x)| < \infty$, et que pour tout $a \in \ell^1(\mathbb{N})$, la fonction $\sum_{n=0}^{\infty} a_n f_n$ appartient à $L^1(\Omega, m)$. En utilisant convenablement le théorème du graphe fermé, montrer que la suite (f_n) est bornée dans L^1 .

Exercice 97. Soit E un sous-espace fermé de $\mathcal{C}([0,1))$. On suppose que toutes les fonctions $f \in E$ sont de classe \mathcal{C}^1 .

- (1) Soit $T: E \to \mathcal{C}([0,1])$ l'application linéaire définie par T(f) := f'. Montrer que T est continue.
- (2) On note B_E la boule unité fermée de E. Montrer qu'il existe une constante $C < \infty$ telle que toutes les fonctions de B_E sont C-lipschitziennes.
- (3) Montrer que E est de dimension finie. (Utiliser les théorèmes de Riesz et Ascoli).

Exercice 98. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré. On suppose que la mesure μ est sigma-finie, et qu'on a $L^2(\mu) \subseteq L^1(\mu)$. Montrer qu'il existe une constante $C < \infty$ telle que $||f||_{L^1} \le C ||f||_{L^2}$ pour toute $f \in L^2(\mu)$; et en déduire que la mesure μ est finie.

Exercice 99. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, avec μ finie. Soit également E un sous-espace fermé de $L^2(\Omega, \mu, \mathbb{R})$. On suppose que toutes les fonctions de E sont (essentiellement) bornées, i.e. $E \subseteq L^{\infty}(\Omega, \mu)$. Le but de l'exercice est de montrer que E est de dimension finie.

(1) Montrer qu'il existe une constante $C < \infty$ telle que

$$\forall f \in E : ||f||_{\infty} \leqslant C ||f||_{2}.$$

- (2) En utilisant la majoration $||f||_2^2 \leq ||f||_{\infty} \times ||f||_1$ (à justifier), montrer que $\forall f \in E : ||f||_2 \leq C ||f||_1$.
- (3) Soient $f_1, \ldots, f_N \in E$ deux à deux orthogonales et vérifiant $||f_i||_2 = 1$ pour tout i.
 - (a) En utilisant (1), montrer que si on fixe $(\varepsilon_1, \dots, \varepsilon_N) \in \{-1, 1\}^N$ alors, pour presque tout $t \in \Omega$, on a

$$\left| \sum_{i=1}^{N} \varepsilon_i f_i(t) \right| \leqslant C \sqrt{N} .$$

- (b) En déduire que pour presque tout $t \in \Omega$, on a $\sum_{i=1}^{N} |f_i(t)| \leq C\sqrt{N}$.
- (c) Montrer qu'on a $N \leq C^4 \mu(\Omega)^2$. (Intégrer (b) et utiliser (2)).

(4) Conclure.

Exercice 100. Soit X un espace vectoriel normé, et soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de X. On suppose que $\forall x^* \in X^* : \sum_{n=0}^{\infty} |\langle x^*, x_n \rangle| < \infty$. Montrer qu'il existe une constante C telle que $\forall x^* \in X^* : \sum_{n=0}^{\infty} |\langle x^*, x_n \rangle| \leqslant C \|x^*\|$.

Exercice 101. (Lemme de Zabrejko)

Soit X un espace de Banach, et soit $p: X \to \mathbb{R}^+$ une semi-norme sur X. On suppose que p possède la propriété suivante : pour toute suite $(x_k)_{k\in\mathbb{N}}\subseteq X$ telle que la série $\sum x_k$ converge dans X, on a

$$p\left(\sum_{k=0}^{\infty} x_k\right) \leqslant \sum_{k=0}^{\infty} p(x_k).$$

Le but de l'exercice est de montrer que p est continue; autrement dit, qu'il existe une constante $C < \infty$ telle que $\forall x \in X : p(x) \leq C ||x||$.

- (1) Pour $n \in \mathbb{N}$, on pose $Q_n := \{x \in X; \ p(x) \le n\}$. Montrer qu'il existe $N \in \mathbb{N}$ tel que $B(0,1) \subseteq \overline{Q_N}$.
- (2) Soit $x \in B(0,1)$. Montrer qu'il existe une suite $(x_k)_{k \ge 0} \subseteq Q_N \cap B(0,1)$ telle que

$$\forall n \in \mathbb{N} : \left\| x - \left(\sum_{k=0}^{n} 2^{-k} x_k \right) \right\| < 2^{-n-1}.$$

(3) Montre que $\forall x \in B(0,1) : p(x) \leq 2N$, et conclure.

Exercice 102. Démontrer le Théorème de Banach-Steinhaus en utilisant le Lemme de Zabrejko. ($Poser\ p(x) := \sup_{i \in I} \|T_i x\|$.)

Exercice 103. Démontrer le Théorème du graphe fermé en utilisant le Lemme de Zabrejko. ($Poser\ p(x) := \|Tx\|$.)

Exercice 104. Soit $\ell^{\infty} := \ell^{\infty}(\mathbb{N}, \mathbb{R})$ et $c_0 := c_0(\mathbb{N}, \mathbb{R})$. Le but de l'exercice est de montrer que c_0 n'est pas complémenté dans ℓ^{∞} , autrement dit qu'il n'existe pas de sous-espace fermé $F \subseteq \ell^{\infty}$ tel que $\ell^{\infty} = c_0 \oplus F$.

(1) Montrer que si $(f_i)_{i\in I}$ est une famille non dénombrable d'éléments de ℓ^{∞} , avec $f_i \neq 0$ pour tout $i \in I$, alors l'ensemble $\left\{\sum_{i\in J} f_i; J \in \mathcal{P}_f(I)\right\}$ n'est pas borné dans ℓ^{∞} . (Commencer par montrer qu'il existe $n \in \mathbb{N}$ et $\varepsilon > 0$ tels que l'ensemble $\{i \in I; |f_i(n)| \geq \varepsilon\}$ est non dénombrable.)

- (2) Montrer qu'il existe une famille non dénombrable $(A_i)_{i\in I}$ de parties de \mathbb{N} vérifiant les propriétés suivantes : tous les ensembles A_i sont infinis, et $A_i \cap A_j$ est fini si $i \neq j$. (Pour $x \in \mathbb{R}$, on pourra considérer un ensemble du type $A_x := \{r_n(x); n \in \mathbb{N}\}$, où $(r_n(x))$ est une suite strictement croissante de rationnels tendant vers x.)
- (3) Avec les notations de (2), montrer que pour tout ensemble fini $J \subseteq I$, on a

$$\mathbf{1}_{\bigcup_{i\in J}A_i} - \sum_{i\in J}\mathbf{1}_{A_i} \in c_0.$$

- (4) Soit $p: \ell^{\infty}c_0$ une projection de l^{∞} sur c_0 , *i.e.* une application linéaire telle que p(x) = x pour tout $x \in c_0$, et soit q:=I-p. En utilisant (3) et (1) avec $f_i := q(\mathbf{1}_{A_i})$, montrer que q n'est pas continue.
- (5) Conclure.