Feuille d'exercices nº 6

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction intégrable sur \mathbb{R} , et soit $\alpha: \mathbb{R} \to \mathbb{R}$ une fonction borélienne telle que $\alpha(x) > 0$ pp. Déterminer, si elle existe, la limite $\lim_{n \to \infty} \int_0^\infty e^{-n^{\alpha(x)} \sin^2 x} f(x) \, dx$.

Exercice 2. Déterminer $\lim_{n\to\infty} \int_0^n \left(1+\frac{x}{n}\right)^n e^{-2x} dx$ et $\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n e^{x/2} dx$.

Exercice 3. Donner un exemple d'une suite de fonctions mesurables $f_n \colon \mathbb{R} \to \mathbb{R}_+$ décroissant vers 0 pour laquelle $\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) dx \neq 0$.

Exercice 4. Calculer $\int_0^1 x^n \log x \, dx$ pour tout entier $n \ge 1$, et en déduire l'égalité

$$\int_0^1 \frac{\log x}{x - 1} \, dx = \sum_{k=1}^\infty \frac{1}{k^2} \, \cdot$$

Exercice 5. Montrer qu'on a

$$\int_0^1 \frac{(x \log x)^2}{1 + x^2} dx = 2 \sum_{n=1}^\infty \frac{(-1)^{n-1}}{(2n+1)^3}.$$

Exercice 6. En appliquant le théorème d'interversion série-intégrale aux fonctions $u_k : [0,1[\to \mathbb{R} \text{ définies par } u_k(x) = (-1)^k x^{2k} (1-x), \text{ établir la formule}$

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)(2k+2)} = \frac{\pi}{4} - \frac{\log(2)}{2}.$$

Exercice 7. Montrer que pour tous p, q > 0, on a

$$\int_0^1 \frac{x^{p-1}}{1+x^q} dx = \sum_{k=0}^\infty \frac{(-1)^k}{p+kq}.$$

En déduire que si 0 , alors

$$\int_0^{+\infty} \frac{x^{p-1}}{1+x} dx = \frac{1}{p} - 2p \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2 - p^2}.$$

Exercice 8. Montrer que pour tout $a \in \mathbb{R}$, on a $\int_0^\infty \frac{\sin(ax)}{e^x - 1} dx = \sum_{n=1}^\infty \frac{a}{n^2 + a^2}$.

Exercice 9. Montrer qu'on a $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \arctan(1) = \frac{\pi}{4}$.

Exercice 10. En considérant $f_n(x) = \sum_{k=0}^n e^{i(k+1)\theta} x^k$, montrer que pour tout $\theta \in]0, 2\pi[$, on peut écrire

$$\sum_{k=1}^{\infty} \frac{\cos k\theta}{k} = -\log \left| 2\sin \frac{\theta}{2} \right| .$$

Exercice 11. Dans cet exercice, on calcule $\sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$ et $\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2}$ pour $x \in [0, \pi]$.

(1) Calculer $\sum_{k=0}^{n} \cos kx$ pour $0 < x \le \pi$, et en déduire que

$$\forall x \in [0, \pi] : \frac{x}{2} + \sum_{k=1}^{n} \frac{\sin(kx)}{k} = \int_{0}^{x/2} \frac{\sin(2n+1)t}{\sin t} dt.$$

- (2) On pose g(0) = 0 et $g(t) = \frac{1}{\sin t} \frac{1}{t}$ pour $0 < t < \pi$.
 - (a) Montrer que g est de classe C^1 sur $[0, \pi[$.
 - (b) En intégrant par parties, montrer que $\varphi_k(x) := \int_0^{x/2} g(t) \sin(kt) dt$ tend vers 0 uniformément sur $[0, \pi]$ quand $k \to \infty$.
- (3) On rappelle que l'intégrale généralisée $\int_0^\infty \frac{\sin t}{t} dt$ existe et vaut $\frac{\pi}{2}$. Déduire de (1) et (2) que pour tout $x \in]0, \pi]$, on a

$$\sum_{k=1}^{\infty} \frac{\sin(kx)}{k} = \frac{\pi - x}{2} \cdot$$

(4) En appliquant le théorème de convergence dominée à la suite (s_n) définie par $s_n(t) = \sum_{k=1}^n \frac{\sin(kt)}{k}$, montrer pour tout $x \in [0, \pi]$, on a

$$\sum_{k=1}^{\infty} \frac{\cos(kx)}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} - \frac{\pi}{2} x + \frac{x^2}{4}.$$

(5) En utilisant (4) pour une valeur bien choisie de x, déterminer la valeur de la somme $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$.

Exercice 12. Calculer l'intégrale $I_k := \int_0^1 (-t \log(t))^k dt$ pour tout $k \in \mathbb{N}$, en commençant par poser $u = -\log(t)$. En déduire la formule

$$\int_0^1 t^{-t} dt = \sum_{n=1}^\infty n^{-n} .$$

Exercice 13. Pour $k \in \mathbb{N}$, calculer l'intégrale $I_k := \int_{\mathbb{R}} t^k e^{-t^2/2} dt$. (On admet que $I_0 = \sqrt{2\pi}$.) En déduire que pour tout $x \in \mathbb{R}$, on a

$$\int_{\mathbb{R}} e^{-ixt} e^{-t^2/2} dt = \sqrt{2\pi} e^{-x^2/2}.$$

Exercice 14. Soit $f_n(x) = e^{-nx} - 2e^{-2nx}$, pour x > 0, et $n \in \mathbb{N}^*$.

- (1) Montrer que $f(x) = \sum_{1}^{\infty} f_n(x)$ est bien défini pour tout x > 0. (2) Montrer que f et les f_n sont intégrables sur $]0, \infty[$.
- (3) Calculer $\int_0^\infty f(x) dx$ et $\sum_{n=1}^\infty \left(\int_0^\infty f_n(x) dx \right)$. Expliquer.

Exercice 15. Soit $f:[0,1]\to\mathbb{C}$ une fonction intégrable.

(1) On suppose que f possède une limite à gauche en 1. Montrer que

$$\lim_{n\to\infty} n \int_0^1 x^n f(x) dx = f(1^-).$$

(2) On suppose que f possède une limite à droite en 0. Montrer que

$$\lim_{h \to 0} \int_0^1 \frac{h}{h^2 + x^2} f(x) dx = \frac{\pi}{2} f(0^+).$$

Exercice 16. Soit $f:[0,\infty]\to\mathbb{C}$ une fonction intégrable sur $[0,\infty[$. Soient également (α_n) et (β_n) deux suites de nombres réels strictement positifs. On suppose que $\alpha_n \to \infty$ et que β_n admet une limite $\beta \in]0, \infty[$ quand $n \to \infty$. Déterminer, si elle existe, la limite $\lim_{n\to\infty} \int_0^{\alpha_n} f(\beta_n t) dt$.

Exercice 17. Soit f une fonction intégrable sur \mathbb{R} et soit $\alpha > 0$. Étudier la convergence de la série $\sum_{n} \int_{\mathbb{R}} \left| \frac{f(nx)}{n^{\alpha}} \right| dx$, puis montrer que pour presque tout $x \in \mathbb{R}$, on a $\lim_{n \to \infty} \frac{f(nx)}{n^{\alpha}} = 0.$

Exercice 18. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction intégrable, et soit (λ_n) une suite de nombres réels positifs vérifiant $\sum_{0}^{\infty} \frac{1}{\lambda_{n}} < \infty$. Montrer que pour presque tout $x \in \mathbb{R}$, on a $\lim_{n\to\infty} f(\lambda_n x) = 0$. (On pourra considérer la série $\sum |f_n|$, où $f_n(x) = f(\lambda_n x)$.)

Exercice 19. Soit $F: \mathbb{R} \to \mathbb{R}$ une fonction dérivable en tout point. On suppose que la fonction F' est bornée (mais pas nécessairement continue). En considérant les fonctions f_n définies par $f_n(x) = n(F(x + \frac{1}{n}) - F(x))$, montrer que la fonction F' est borélienne et que pour tous $a, b \in \mathbb{R}$, on a $F(b) - F(a) = \int_a^b F'(t) dt$.

Exercice 20. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, et soit (f_n) une suite de fonctions intégrables sur Ω , à valeurs complexes. On suppose que la suite (f_n) converge simpolement vers une fonction $f:\Omega\to\mathbb{C}$. On suppose également qu'il existe une constante $C<\infty$ telle que $\forall n\in\mathbb{N}:\int_{\Omega}|f_n|\,d\mu\leq C$. Montrer que la fonction f est intégrable sur Ω .

Exercice 21. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, et soit (f_n) une suite de fonctions intégrables sur Ω , à valeurs complexes. On suppose que la suite (f_n) converge presque partout vers une fonction $intégrable \ f : \Omega \to \mathbb{C}$.

(1) Montrer qu'on a

$$\lim_{n\to\infty} \int_{\Omega} \left[|f_n - f| - (|f_n| - |f|) \right] d\mu = 0.$$

(2) En déduire que si $\int_{\Omega} |f_n| d\mu$ tend vers $\int_{\Omega} |f| d\mu$ quand n tend vers l'infini, alors $\int_{\Omega} |f_n - f| d\mu$ tend vers 0.

Exercice 22. Soit $(\Omega, \mathfrak{A}, \mu)$ un espace mesuré, et soit $f : \Omega \to \mathbb{R}^+$ une fonction mesurable. On suppose qu'on a $0 < \int_{\Omega} f \, d\mu < \infty$. Pour $\alpha > 0$, déterminer

$$\lim_{n \to \infty} n \int_{\Omega} \log \left[1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right] d\mu(x) .$$

On aura à distinguer 3 cas : $0 < \alpha < 1$, $\alpha = 1$ et $\alpha > 1$. Dans le troisième cas, on pourra utiliser l'inégalité $1 + u^{\alpha} \le (1 + u)^{\alpha}$, après l'avoir démontrée.

Exercice 23. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, avec $\mu(\Omega) < \infty$. Toutes les fonctions sur Ω considérées sont mesurables et à valeurs complexes. On dit qu'une suite de fonctions (f_n) converge en mesure vers une fonction f si, pour tout $\varepsilon > 0$, on a

$$\lim_{n \to \infty} \mu(\{x \in \Omega; |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

(1) Montrer qu'une suite (f_n) converge en mesure vers une fonction f si et seulement si

$$\lim_{n\to\infty} \int_{\Omega} \min(1, |f_n - f|) \, d\mu = 0.$$

(2) En déduire que si une suite (f_n) converge presque partout, alors elle converge en mesure.

Exercice 24. Soit $g:[0,1]\to\mathbb{C}$ une fonction continue. On suppose qu'on a

$$\sup_{n\geq 0} \left| \int_0^1 g(t) \, e^{nt} \, dt \right| < \infty.$$

Le but de l'exercice est de montrer que g = 0.

- (1) Soit f une fonction intégrable sur [0,1], et soit $x \in [0,1]$.
 - (a) Montrer que pour tout entier $k \geq 1$, on a le droit d'écrire

$$\int_0^1 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n!} e^{kn(x-t)} f(t) dt = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n!} \int_0^1 e^{kn(x-t)} f(t) dt.$$

(b) En déduire qu'on a

$$\int_0^x f(t) dt = \lim_{k \to \infty} \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n!} \int_0^1 e^{kn(x-t)} f(t) dt.$$

- (2) En appliquant (1) à f(t) = g(1-t), montrer qu'on a $\int_{1-x}^{1} g(t) dt = 0$ pour tout $x \in [0, 1[$.
- (3) Conclure.

Exercice 25. (sommes de Riemann)

Dans tout l'exercice, $f:[a,b]\to\mathbb{R}$ est une fonction intégrable (par rapport à la mesure de Lebesgue). Pour $n\in\mathbb{N}^*$, on pose

$$R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right).$$

- (1) On suppose que f est bornée et que l'ensemble des points de discontinuité de f est de mesure (de Lebesgue) nulle. Montrer que $R_n(f) \to \int_a^b f(t) dt$ quand $n \to \infty$
- (2) Montrer que si f est lipschitzienne, alors

$$R_n(f) - \int_a^b f(t) dt = O\left(\frac{1}{n}\right).$$

(3) On suppose que f est de classe \mathcal{C}^1 . Montrer qu'on a

$$\int_a^b f(t) dt - R_n(f) = \frac{b-a}{2n} \left(f(b) - f(a) \right) + o\left(\frac{1}{n}\right).$$

(4) On suppose que f est de classe C^2 . Déterminer deux constantes α, β telles que

$$\int_{a}^{b} f(t) dt - R_n(f) = \frac{\alpha}{n} + \frac{\beta}{n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 26. Soient [a,b] et [c,d] deux intervalles compacts de \mathbb{R} , et soit $f:[a,b] \times [c,d] \to \mathbb{R}$. On suppose que f est bornée, et qu'elle est **séparément intégrable au sens de Riemann**, ce qui signifie ceci : pour tout $x \in [a,b]$, la fonction $y \mapsto f(x,y)$ est intégrable au sens de Riemann sur [c,d], et pour tout $y \in [c,d]$, la fonction $x \mapsto f(x,y)$ est intégrable au sens de Riemann sur [a,b]. Le but de l'exercice est de montrer que les fonctions $x \mapsto \int_c^d f(x,y) dy$ et $y \mapsto \int_a^b f(x,y) dx$ sont intégrables au sens de Riemann sur [a,b] et [c,d] respectivement, et qu'on a

$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy.$$

(1) Montrer que pour tout $y \in [c, d]$, on a

$$\int_{a}^{b} f(x,y) \, dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}, y\right);$$

et en déduire que la fonction $y \mapsto \int_a^b f(x,y) dx$ est λ_1 -intégrable au sens de Lebesgue sur [c,d].

- (2) Soit $F:[a,b] \to \mathbb{R}$ la fonction définie par $F(x) = \int_c^d f(x,y) \, dy$.
 - (a) Pour toute toute fonction $h:[a,b]\to\mathbb{R}$ et pour toute "subdivision pointée" $\sigma=\big((I_0,x_0),\ldots,(I_{N-1},x_{N-1})\big)$ de l'intervalle [a,b], on note $R(h,\sigma)$ la somme de Riemann pour h associée à σ :

$$R(h,\sigma) = \sum_{k=0}^{N-1} h(x_k) |I_k| = \sum_{(I,x)\in\sigma} h(x) |I|.$$

Vérifier que

$$R(F,\sigma) = \int_{[c,d]} R(f_y,\sigma) \, d\lambda_1(y),$$

où f_y est la fonction $x \mapsto f(x, y)$.

(b) En déduire que si $(\sigma_n)_{n\in\mathbb{N}}$ est une suite de subdivisions pointées de [a,b] dont le "pas" tend vers 0, alors

$$R(F, \sigma_n) \xrightarrow{n \to \infty} \int_{[c,d]} \left(\int_a^b f(x,y) \, dx \right) d\lambda_1(y).$$

(3) Démontrer le résultat souhaité.