Feuille d'exercices nº 1

Exercice 1. Montrer qu'il est possible de déduire le Lemme de Lebesgue du Lemme de Cousin.

Exercice 2. Le but de l'exercice est de donner une preuve du théorème des valeurs intermédiaires. On fixe donc une fonction $f:[a,b] \to \mathbb{R}$ continue telle que f(a) < 0 < f(b), et on veut montrer qu'il existe un $x \in [a,b]$ tel que f(x) = 0. Pour cela, on raisonne par l'absurde en supposant que $\forall x \in [a,b]: f(x) \neq 0$.

- (1) En utilisant la définition de la continuité, montrer que pour tout $x \in [a, b]$, on peut trouver un intervalle ouvert V_x centré en x tel que f est de signe constant sur $V_x \cap [a, b]$. (On pourra prendre ε tel que $0 < \varepsilon < |f(x)|$.)
- (2) En déduire qu'il existe une subdivision (s_0, \ldots, s_N) de [a, b] telle que, pour chaque $k \in \{0, \ldots, N-1\}$, la fonction f est de signe constant sur $[s_k, s_{k+1}]$.
- (3) En déduire une contradiction, et conclure.

Exercice 3. On rappelle qu'une fonction $f: I \to \mathbb{R}$ définie sur un intervalle I de \mathbb{R} est dite **bornée sur** I s'il existe une constante C telle que $\forall t \in I: |f(t)| \leq C$. Le but de l'exercice est de donner une preuve du fait que toute fonction *continue* sur un intervalle $fermé\ borné\ [a,b]$ est bornée sur [a,b].

- (1) Soit $f:[a,b] \to \mathbb{R}$ continue. En utilisant la définition de la continuité avec $\varepsilon = 6$, montrer que pour tout $x \in [a,b]$, on peut trouver un intervalle ouvert V_x centré en x tel que f est bornée sur $V_x \cap [a,b]$.
- (2) En déduire qu'il existe une subdivision (s_0, \ldots, s_N) de [a, b] telle que, pour chaque $k \in \{0, \ldots, N-1\}$, la fonction f est bornée sur $[s_k, s_{k+1}]$.
- (3) Démontrer le résultat souhaité.

Exercice 4. On dit qu'une fonction $f: I \to \mathbb{R}$ définie sur un intervalle $I \subseteq \mathbb{R}$ est uniformément continue sur I si, pour tout $\varepsilon > 0$, on peut trouver $\delta > 0$ tel que

- (*) $\forall u, v \in I \text{ v\'erifiant } |v u| < \delta, \text{ on a } |f(v) f(v)| < \varepsilon.$
 - (1) Montrer que toute fonction uniformément continue est continue.
 - (2) Montrer que si $t \in \mathbb{R}^+$ et $\delta > 0$, alors $(t + \delta)^2 t^2 \ge 2t\delta$; et en déduire que $f(t) := t^2$ n'est pas uniformément continue sur \mathbb{R}^+ .

- (3) Le but de cette question est de montrer que si I = [a, b] est un intervalle ferm'e born'e, alors toute fonction continue sur [a, b] est uniformément continue. On fixe donc une fonction continue $f: [a, b] \to \mathbb{R}$, et $\varepsilon > 0$, et on cherche $\delta > 0$ vérifiant (*).
 - (a) Montrer que pour tout $x \in [a, b]$, on peut trouver un intervalle ouvert V_x contenant x tel que

$$\forall u, v \in V_x : |f(v) - f(u)| < \varepsilon.$$

(b) Conclure en utilisant le Lemme de Lebesgue.

Exercice 5. Le but de l'exercice est de donner une preuve de l'inégalité des accroissements finis différente de celle vue au 1er semestre. On se donne donc une fonction dérivable $f:[a,b] \to \mathbb{R}$ telle $f'(x) \leq M$ pour tout $x \in [a,b]$, où M est une constante, et on veut montrer qu'on a $f(b) - f(a) \leq M(b-a)$.

- (1) Soit C > M. En utilisant la définition de la dérivée, montrer que pour tout $x \in [a,b]$, on peut trouver un intervalle ouvert V_x centré en x tel que $\frac{f(z)-f(x)}{z-x} \leq C$ pour tout $z \in V_x \cap [a,b], z \neq x$.
- (2) On garde les notations de (1). Montrer que si $x \in [a, b]$, alors $f(v) f(u) \le C(v u)$ pour tous $u, v \in V_x$ tels que $u \le x \le v$.
- (3) En utilisant le Lemme de Cousin (dans sa version "précise") montrer que pour tout C > M, on a f(b) f(a) < C(b a).
- (4) Conclure.

Exercice 6. Soit φ une fonction en escalier sur [a,b]. Montrer que si $\widetilde{\varphi}:[a,b]\to\mathbb{R}$ est telle que l'ensemble $\{t\in[a,b];\ \widetilde{\varphi}(t)\neq\varphi(t)\}$ est fini, alors $\widetilde{\varphi}$ est en escalier.

Exercice 7. Montrer qu'une fonction $\varphi : [a, b] \to \mathbb{R}$ est en escalier si et seulement si elle est de la forme $\varphi = \sum_{j=1}^{M} \beta_j \mathbf{1}_{I_j}$, où les I_j sont des intervalles et $\beta_1, \ldots, \beta_M \in \mathbb{R}$. (Ne pas oublier que les singletons sont des intervalles.)

Exercice 8. Si φ et ψ sont des fonctions sur [a,b], on note $\varphi \lor \psi$ et $\varphi \land \psi$ les fonctions définies par $\varphi \lor \psi$ $(t) = \max(\varphi(t), \psi(t))$ et $\varphi \land \psi$ $(t) = \min(\varphi(t), \psi(t))$. Montrer que si φ et ψ sont en escalier, alors $\varphi \lor \psi$ et $\varphi \land \psi$ sont en escalier.

Exercice 9. Soit $f:]0,1] \to \mathbb{R}$ définie par f(0) = 0 et $f(x) = \sin(1/x)$ pour x > 0. La fonction f est-elle réglée?

Exercice 10. Montrer que si f et g sont des fonctions réglées sur un intervalle [a, b], alors fg, f + g et |f| sont réglées.

Exercice 11. Soit $f:[a,b] \to \mathbb{R}$ une fonction réglée. Le but de l'exercice est de montrer que l'ensemble des points de discontinuité de f est $d\acute{e}nombrable$ (éventuellement fini).

(1) Justifier l'existence d'une suite (φ_n) de fonctions en escalier telle que

$$\forall n \ \forall t \in [a, b] : |\varphi_n(t) - f(t)| \le 2^{-n}.$$

- (2) On note G l'ensemble des points $t \in [a, b]$ qui sont des points de continuité de toutes les fonctions φ_n . En observant qu'une fonction en escalier n'a qu'un nombre fini de points de discontinuité, montrer que $D = [a, b] \setminus G$ est dénombrable.
- (3) Dans cette question, on veut montrer que tout point de G est un point de continuité de f. On fixe donc $t_0 \in G$ et $\varepsilon > 0$, et on cherche à montrer qu'il existe $\delta > 0$ tel que $|f(x) f(t_0)| < \varepsilon$ pour tout $x \in [a, b]$ vérifiant $|x t_0| < \delta$.
 - (a) Justifier l'existence d'un entier n tel que $\forall t \in [a,b] : |\varphi_n(t) f(t)| \le \varepsilon/3$.
 - (b) Montrer que $\forall x \in [a, b] : |f(x) f(t_0)| \le 2\varepsilon/3 + |\varphi_n(x) \varphi_n(t_0)|$.
 - (c) Conclure.
- (4) Démontrer le résultat souhaité.

Exercice 12. Donner un exemple de fonction $f:[0,1] \to \mathbb{R}$ qui ne soit pas réglée mais possède un seul point de discontinuité.

Exercice 13. L'Exercice 11 montre en particulier que si $f:[a,b] \to \mathbb{R}$ est une fonction croissante, alors l'ensemble des points de discontinuité de f est dénombrable. Dans le présent exercice, on veut donner une autre preuve de ce résultat. On fixe donc une fonction croissante $f:[a,b] \to \mathbb{R}$.

- (1) Montrer qu'un point $x \in]a, b[$ est un point de discontinuité de f si et seulement si il existe un entier $k \in \mathbb{N}^*$ tel que $f(x^+) f(x^-) \ge 1/k$.
- (2) Pour $\varepsilon > 0$, on pose $D_{\varepsilon} = \{x \in]a, b[; f(x^+) f(x^-) \ge \varepsilon\}.$
 - (a) Montrer que si $x_1 < \cdots < x_N$ sont des points de D_{ε} , alors

$$f(b) - f(a) \ge \sum_{i=1}^{N} \left(f(x_i^+) - f(x_i^-) \right) \ge N \varepsilon.$$

(b) En déduire que D_{ε} est un ensemble fini.

Exercice 14. Donner un exemple de fonction croissante sur [0,1] qui possède une infinité de points de discontinuité.

Exercice 15. Soit $f: I \to \mathbb{R}$ une fonction dérivable telle que f' soit bornée sur I. Montrer que f est uniformément continue.

Exercice 16. Soit $\alpha > 1$. Montrer à l'aide du théorème des accroissements finis que si $t \in \mathbb{R}^+$ et $\delta > 0$, alors $(t + \delta)^{\alpha} \ge \alpha \, \delta t^{\alpha - 1}$; et en déduire que $f(t) := t^{\alpha}$ n'est pas uniformément continue sur \mathbb{R}^+ .

Exercice 17. Montrer que $\sqrt{v} - \sqrt{u} \le \sqrt{v - u}$ pour tous $u, v \in \mathbb{R}^+$ tels que $u \le v$, et en déduire que $f(x) := \sqrt{x}$ est uniformément continue sur \mathbb{R}^+ .

Exercice 18. Soit α vérifiant $0 < \alpha \le 1$.

- (1) En étudiant $\varphi(t) = (1+t)^{\alpha} t^{\alpha}$, montrer que pour tout $t \geq 0$, on a $(1+t)^{\alpha} \leq 1 + t^{\alpha}$.
- (2) En déduire que pour tous u, v > 0, on a $(u + v)^{\alpha} < u^{\alpha} + v^{\alpha}$.
- (3) Montrer que $f(x) := x^{\alpha}$ est uniformément continue sur \mathbb{R}^+ .

Exercice 19. Soit I un intervalle borné de \mathbb{R} (pas nécessairement fermé). Montrer que toute fonction uniformément continue sur I est bornée.

Exercice 20. Montrer que f(t) = 1/t n'est pas uniformément continue sur [0,1].

Exercice 21. Soit $f:[0,\infty[\to\mathbb{R}]]$ une fonction continue. On suppose que f admet une limite finie l en $+\infty$.

- (1) Montrer que pour tout $\varepsilon > 0$, on peut trouver $A_{\varepsilon} > 0$ tel que $\forall s > A_{\varepsilon}$: $|f(s) f(A)| < \varepsilon$.
- (2) Montrer que f est uniformément continue.

Exercice 22. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction uniformément continue. Le but de l'exercice est de montrer qu'il existe deux constantes A et B telles que

$$\forall x \in \mathbb{R}^+ : f(x) \le A + Bx.$$

(1) Soit $\delta > 0$. Montrer que pour tout $x \in \mathbb{R}^+$, on peut trouver un entier n_x et un point $u_x \in [0, \delta]$ tel que $x = u_x + n_x \delta$. En déduire, en utilisant le fait que f est bornée sur $[0, \delta]$, qu'il existe une constante A_{δ} telle que

$$|f(x)| \le A_{\delta} + n_x \times \max \{ |f(u_x + (i+1)\delta) - f(u_x + i\delta)|; \ 0 \le i < n_x \}.$$

(2) Démontrer le résultat souhaité en utilisant la définition de l'uniforme continuité avec $\varepsilon = 6$.

Exercice 23. Déduire de l'exercice 22 que si $\alpha > 1$, alors $f(x) = x^{\alpha}$ n'est pas uniformément continue sur \mathbb{R}^+ .