Feuille d'exercices nº 6

Exercice 1. Soit f une fonction intégrable sur $[0, \infty[$, à valeurs complexes. Déterminer $\lim_{n\to\infty} \int_0^{+\infty} e^{-n\sin^2 x} f(x) dx$.

Exercice 2. Soit $f:[0,\infty[\to\mathbb{C}$ une fonction intégrable sur $[0,\infty[$. Déterminer la limite $\lim_{n\to\infty}\int_0^n f(\frac{n}{n+1}\,t)\,dt$.

Exercice 3. Calcular $\lim_{n\to\infty} \int_0^n \left(1+\frac{x}{n}\right)^n e^{-2x} dx$ et $\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n e^{x/2} dx$.

Exercice 4. Soit $f:[0,1]\to\mathbb{C}$ une fonction intégrable.

(1) On suppose que f possède une limite à gauche en 1. Montrer que

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) dx = f(1^-).$$

(2) On suppose que f possède une limite à droite en 0. Montrer que

$$\lim_{h \to 0} \int_0^1 \frac{h}{h^2 + x^2} f(x) dx = \frac{\pi}{2} f(0^+).$$

Exercice 5. Calculer $\int_0^1 x^n \log x \, dx$ pour tout entier $n \ge 1$, et en déduire l'égalité

$$\int_0^1 \frac{\log x}{x - 1} \, dx = \sum_{k=1}^\infty \frac{1}{k^2} \, \cdot$$

Exercice 6. Montrer qu'on a

$$\int_0^1 \frac{(x \log x)^2}{1 + x^2} dx = 2 \sum_{n=1}^\infty \frac{(-1)^{n-1}}{(2n+1)^3}.$$

Exercice 7. Montrer que pour tous p, q > 0, on a

$$\int_0^1 \frac{x^{p-1}}{1+x^q} dx = \sum_{k=0}^\infty \frac{(-1)^k}{p+kq} \cdot$$

En déduire que si 0 , alors

$$\int_0^{+\infty} \frac{x^{p-1}}{1+x} \, dx = \frac{1}{p} - 2p \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2 - p^2} \, \cdot$$

Exercice 8. Montrer que pour tout $a \in \mathbb{R}$, on a $\int_0^\infty \frac{\sin(ax)}{e^x - 1} dx = \sum_{n=1}^\infty \frac{a}{n^2 + a^2}$.

Exercice 9. Montrer qu'on a $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \arctan(1) = \frac{\pi}{4}$.

Exercice 10. Calculer l'intégrale $\int_0^1 \frac{\log(1-t)}{t} dt$.

Exercice 11. En considérant $f_n(x) = \sum_{k=0}^n e^{i(k+1)\theta} x^k$, montrer que pour tout $\theta \in]0, 2\pi[$, on peut écrire

$$\sum_{k=1}^{\infty} \frac{\cos k\theta}{k} = -\log \left| 2\sin \frac{\theta}{2} \right| .$$

Exercice 12. Le but de l'exercice est de calculer la somme $S = \sum_{k=1}^{\infty} \frac{1}{k^2}$.

(1) Calculer $\sum_{k=0}^{n} \cos kx$ pour $0 < x \le \pi$, et en déduire que

$$\forall x \in]0,\pi] : \frac{x}{2} + \sum_{k=1}^{n} \frac{\sin kx}{k} = \int_{0}^{x/2} \frac{\sin(2n+1)t}{\sin t} dt.$$

- (2) On pose g(0) = 0 et $g(t) = \frac{1}{\sin t} \frac{1}{t}$ pour $0 < t < \pi$.
 - (a) Montrer que g est de classe C^1 sur $[0, \pi[$.
 - (b) En intégrant par parties, montrer que $\lim_{k\to\infty} \int_0^{x/2} g(t) \sin kt \, dt = 0$, uniformément par rapport à $x \in [0, \pi]$.
- (3) On rappelle que l'intégrale généralisée $\int_0^\infty \frac{\sin t}{t} dt$ existe et vaut $\frac{\pi}{2}$. Déduire de (1) et (2) que pour tout $x \in]0,\pi]$, on a

$$\sum_{k=1}^{\infty} \frac{\sin kx}{k} = \frac{\pi - x}{2} \cdot$$

(4) En appliquant le théorème de convergence dominée à la suite (s_n) définie par $s_n(t) = \sum_{k=1}^n \frac{\sin kt}{k}$, montrer pour tout $x \in [0, \pi]$, on a

$$\sum_{k=1}^{\infty} \frac{\cos kx}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} - \frac{\pi}{2}x + \frac{x^2}{4}.$$

(5) En déduire qu'on a

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2} - \frac{\pi}{4},$$

puis déterminer la valeur de S.

Exercice 13. Soit $f_n(x) = e^{-nx} - 2e^{-2nx}$, pour x > 0, et $n \in \mathbb{N}^*$.

- (1) Montrer que $f(x) = \sum_{1}^{\infty} f_n(x)$ est bien défini pour tout x > 0. (2) Montrer que les f_n et f sont intégrables sur $]0, \infty[$.
- (3) Calculer $\int_0^\infty f(x) dx$ et $\sum_{n=1}^\infty \left(\int_0^\infty f_n(x) dx \right)$. Expliquer.

Exercice 14. Soit $g:[0,1]\to\mathbb{C}$ une fonction continue. On suppose qu'on a

$$\sup_{n>0} \left| \int_0^1 g(t) e^{nt} dt \right| < \infty.$$

Le but de l'exercice est de montrer que q=0.

- (1) Soit f une fonction intégrable sur [0,1], et soit $x \in]0,1[$.
 - (a) Montrer que pour tout entier $k \geq 1$, on a le droit d'écrire

$$\int_0^1 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n!} e^{kn(x-t)} f(t) dt = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n!} \int_0^1 e^{kn(x-t)} f(t) dt.$$

(b) En déduire qu'on a

$$\int_0^x f(t) dt = \lim_{k \to \infty} \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n!} \int_0^1 e^{kn(x-t)} f(t) dt.$$

- (2) En appliquant (1) à f(t) = g(1-t), montrer qu'on a $\int_{1-x}^{1} g(t) dt = 0$ pour tout $x \in [0, 1[$.
- (3) Conclure.

Exercice 15. Soit f une fonction intégrable sur \mathbb{R} et soit $\alpha > 0$.

- (1) Calculer $\int_{\mathbb{R}} \left(\sum_{n=1}^{\infty} \left| \frac{f(nx)}{n^{\alpha}} \right| \right) dx$.
- (2) En déduire que pour presque tout $x \in \mathbb{R}$, on a $\lim_{n \to \infty} \frac{f(nx)}{n^{\alpha}} = 0$.

Exercice 16. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction intégrable, et soit (λ_n) une suite de nombres réels positifs vérifiant $\sum_{0}^{\infty} \frac{1}{\lambda_n} < \infty$. Montrer que pour presque tout $x \in \mathbb{R}$, on a $\lim_{n\to\infty} f(\lambda_n x) = 0$. On pourra considérer la série $\sum |f_n|$, où $f_n(x) = f(\lambda_n x)$.

Exercice 17. Soit $F : \mathbb{R} \to \mathbb{R}$ une fonction dérivable en tout point. On suppose que la fonction F' est bornée (mais pas nécessairement continue).

- (1) Justifier que F' est une fonction borélienne.
- (2) Montrer que la fonction F est lipschitzienne.
- (3) Montrer que pour tous $a, b \in \mathbb{R}$, on a $F(b) F(a) = \int_a^b F'(t) dt$.

Exercice 18. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, et soit (f_n) une suite de fonctions intégrables sur Ω , à valeurs complexes. On suppose que la suite (f_n) converge simpolement vers une fonction $f:\Omega\to\mathbb{C}$. On suppose également qu'il existe une constante $C<\infty$ telle que $\forall n\in\mathbb{N}:\int_{\Omega}|f_n|\,d\mu\leq C$. Montrer que la fonction f est intégrable sur Ω .

Exercice 19. Donner un exemple d'une suite de fonctions mesurables $f_n \colon \mathbb{R} \to \mathbb{R}_+$ décroissant vers 0 pour laquelle $\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) dx \neq 0$.

Exercice 20. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, et soit (f_n) une suite de fonctions intégrables sur Ω , à valeurs complexes. On suppose que la suite (f_n) converge presque partout vers une fonction $intégrable \ f : \Omega \to \mathbb{C}$.

(1) Montrer qu'on a

$$\lim_{n\to\infty} \int_{\Omega} \left[|f_n - f| - (|f_n| - |f|) \right] d\mu = 0.$$

(2) En déduire que si $\int_{\Omega} |f_n| d\mu$ tend vers $\int_{\Omega} |f| d\mu$ quand n tend vers l'infini, alors $\int_{\Omega} |f_n - f| d\mu$ tend vers 0.

Exercice 21. Soit $(\Omega, \mathfrak{A}, \mu)$ un espace mesuré, et soit $f: \Omega \to \mathbb{R}^+$ une fonction mesurable. On suppose qu'on a $0 < \int_{\Omega} f \, d\mu < \infty$. Pour $\alpha > 0$, déterminer

$$\lim_{n \to \infty} n \int_{\Omega} \log \left[1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right] d\mu(x) .$$

On aura à distinguer 3 cas : $0 < \alpha < 1$, $\alpha = 1$ et $\alpha > 1$. Dans le troisième cas, on pourra utiliser l'inégalité $(1+x)^{\alpha} \le e^{\alpha x}$, après l'avoir démontrée.

Exercice 22. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, avec $\mu(\Omega) < \infty$. Toutes les fonctions sur Ω considérées sont mesurables et à valeurs complexes. On dit qu'une suite de fonctions (f_n) converge en mesure vers une fonction f si, pour tout $\varepsilon > 0$, on a

$$\lim_{n \to \infty} \mu(\{x \in \Omega; |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

(1) Montrer qu'une suite (f_n) converge en mesure vers une fonction f si et seulement si

$$\lim_{n\to\infty} \int_{\Omega} \min(1, |f_n - f|) d\mu = 0.$$

(2) En déduire que si une suite (f_n) converge presque partout, alors elle converge en mesure.

Exercice 23. (sommes de Riemann)

Dans tout l'exercice, $f:[a,b]\to\mathbb{R}$ est une fonction intégrable. Pour $n\in\mathbb{N}^*$, on pose

$$R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right).$$

- (1) On suppose que f est bornée et que l'ensemble des points de discontinuité de f est de mesure (de Lebesgue) nulle. Montrer que $R_n(f) \to \int_a^b f(t) dt$ quand $n \to \infty$.
- (2) Montrer que si f est lipschitzienne, alors

$$R_n(f) - \int_a^b f(t) dt = O\left(\frac{1}{n}\right).$$

(3) On suppose que f est de classe C^1 . Montrer qu'on a

$$R_n(f) - \int_a^b f(t) dt = \frac{b-a}{2n} \left(f(b) - f(a) \right) + o\left(\frac{1}{n}\right).$$

(4) On suppose que f est de classe C^2 . Déterminer deux constantes α, β telles que

$$\int_{a}^{b} f(t) dt - R_n(f) = \frac{\alpha}{n} + \frac{\beta}{n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice 24. Soit $(\Omega, \mathfrak{B}, \mu)$ un espace mesuré, et soit f une fonction intégrable sur Ω , à valeurs complexes.

- (1) Pour $n \in \mathbb{N}^*$, on pose $A^n = \{x \in \Omega; \frac{1}{n} \le |f(x)| \le n\}$. Vérifier que la suite (A^n) est croissante, et déterminer $\bigcup_{n=1}^{\infty} A^n$.
- (2) Déduire de (1) que pour tout $\eta > 0$, on peut trouver un ensemble $A_{\eta} \in \mathfrak{A}$ vérifiant les propriétés suivantes:
 - (a) $\mu(A_{\eta}) < \infty$;
 - (b) La fonction f est bornée sur A_{η} ;
 - (c) $\int_{\Omega \setminus A_n} |f| d\mu < \eta$.

(3) En utilisant (2), montrer que pour tout $\varepsilon > 0$, on peut trouver $\delta > 0$ tel que

$$\forall B \in \mathfrak{A} : \mu(B) < \delta \Longrightarrow \int_{B} |f| \, d\mu < \varepsilon.$$

(4) On suppose que $\Omega = \mathbb{R}$ et que μ est la mesure de Lebesgue. Pour $x \in \mathbb{R}$, on pose

$$F(x) = \int_{-\infty}^{x} f(t) dt.$$

Montrer que la fonction F est uniformément continue sur \mathbb{R} .

Exercice 25. Dans tout l'exercice, $(\Omega, \mathfrak{B}, \mu)$ est un espace mesuré.

(1) Soit $\phi : \mathbb{R}^+ \to \mathbb{R}$ une fonction continue ≥ 0 , de classe \mathcal{C}^1 sur $]0, \infty[$ et telle que $\phi(0) = 0$. Montrer que pour toute fonction mesurable positive f sur Ω , on a

$$\int_{X} \phi(f(x)) \, d\mu(x) = \int_{0}^{\infty} \phi'(t) \mu(\{x; \ f(x) \ge t\}) \, dt \, .$$

- (2) Expliciter la formule précédente lorsque $\phi(t) = t^p$, où $p \ge 1$.
- (3) Soit f une fonction mesurable positive sur Ω . On suppose qu'il existe deux constantes $A < \infty$ et c > 0 telles que

$$\forall t > 0 : \mu(\{x; f(x) \ge t\}) \le A e^{-ct}$$
.

Montrer qu'on a $\int_{\Omega} f(x)^p d\mu(x) < \infty$ pour tout $p \ge 1$.

Exercice 26. Montrer que la formule $f(x) = \int_0^\infty e^{-tx} \sin(t^3 x) dt$ définit une fonction de classe C^∞ sur $]0, \infty[$.

Exercice 27. Le but de l'exercice est de calculer l'intégrale $I = \int_0^\infty e^{-t^2} dt$.

- (1) Pour $x \in \mathbb{R}$, on pose $F(x) = \left(\int_0^x e^{-t^2} dt\right)^2$. Montrer que F est dérivable sur \mathbb{R} et calculer F'
- \mathbb{R} et calculer F'. (2) On pose $G(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$. Montrer que G est dérivable sur \mathbb{R} et calculer G'.
- (3) Montrer qu'on a $\lim_{x\to+\infty} G(x) = 0$.
- (4) Calculer I.

Exercice 28. Dans cet exercice, on donne une méthode pour calculer, pour tout $\alpha > 0$, la valeur de l'intégrale

$$I_{\alpha} = \int_{\mathbb{R}} e^{-\alpha t^2} dt \,.$$

- (1) On définit $f: \mathbb{R}^+ \to \mathbb{R}$ par $f(x) = \int_0^\infty \frac{e^{-xt^2}}{1+t^2} dt$.
 - (a) Justifier la définition, et montrer que f est continue sur \mathbb{R}^+ .
 - (b) Calculer f(0) et déterminer $\lim_{x\to\infty} f(x)$.
 - (c) Montrer que f est dérivable sur $]0, \infty[$ et vérifie une équation différentielle du type $f'(x) f(x) = \frac{c}{\sqrt{x}}$, où c est une constante qu'on exprimera en fonction de I_1 .
 - (d) Résoudre l'équation différentielle précédente, puis calculer I_1 .
- (2) Calculer I_{α} pour tout $\alpha > 0$.

Exercice 29. Le but de l'exercice est de déterminer la transformée de Fourier de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(t) = \frac{1}{1+t^2}$.

- (1) Pour $n \in \mathbb{N}^*$, on définit $g_n : \mathbb{R} \to \mathbb{R}$ par $g_n(x) = \int_{-n}^n \frac{e^{-itx}}{1+t^2} dt$. Montrer que les g_n sont de classe \mathcal{C}^1 , et que la suite (g'_n) converge uniformément sur tout intervalle $[a, \infty[$, a > 0.
- (2) Déduire de (1) que la fonction \hat{f} est de classe \mathcal{C}^1 sur $]0,\infty[$, et donner une formule pour $\hat{f}'(x)$. Montrer ensuite que pour tout x>0, on a

$$\hat{f}'(x) = \int_{\mathbb{R}} \frac{-iu}{u^2 + x^2} e^{-iu} du.$$

- (3) Montrer que \hat{f} est deux fois dérivable sur $]0, \infty[$ et y vérifie l'équation différentielle $\hat{f}'' = \hat{f}$.
- (4) Montrer qu'on a $\hat{f}(x) = \pi e^{-vertx}$ pour tout $x \in \mathbb{R}$.

Exercice 30. Pour $x \ge 0$, on pose $F(x) = \int_0^\infty \frac{1 - e^{-t^2 x}}{t^2} dt$.

- (1) Justifier la définition, et montrer que F est continue à droite en 0.
- (2) Montrer que F est dérivable sur $]0, \infty[$ et calculer F'(x) pour x > 0.
- (3) Calculer F(x) pour tout $x \ge 0$.

Exercice 31. Montrer que pour tout $\lambda > 0$, on $a \int_0^\infty \frac{e^{-x} - e^{-\lambda x}}{x} dx = \log \lambda$.

Exercice 32. Calculer $F(t) = \int_0^{+\infty} \frac{\log(1+t^2x^2)}{1+x^2} dx$ pour tout $t \in \mathbb{R}$.

Exercice 33. Montrer que pour tout $c \geq 0$, on a

$$\int_0^\infty e^{-c/x^2} e^{-x^2/2} dx = \sqrt{\frac{\pi}{2}} e^{-\sqrt{2c}}.$$

Exercice 34. (fonction Gamma, 1)

Pour x > 0, on pose

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

- (1) Justifier la définition.
- (2) Montrer que la fonction Γ est de classe \mathcal{C}^{∞} sur $]0, \infty[$.
- (3) Déterminer $\lim_{x\to 0^+} \Gamma(x)$.
- (4) Montrer que la fonction $\log \Gamma$ est convexe.
- (5) Trouver une relation entre $\Gamma(x+1)$ et $\Gamma(x)$, et en déduire la valeur de $\Gamma(n+1)$ pour $n \in \mathbb{N}$.

Exercice 35. (fonction Gamma, 2)

On garde les notations de l'exercice 34. Le but de l'exercice est de montrer que pour tout x > 0, on a

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! n^x}{x(x+1)\dots(x+n)} \cdot \dots$$

- (1) Pour $n \in \mathbb{N}$ et x > 0, on pose $J_n(x) = \int_0^1 u^{x-1} (1-u)^n du$. Trouver une relation entre $J_n(x)$ et $J_{n-1}(x+1)$ pour $n \ge 1$, et en déduire $J_n(x)$ pour tout
- (2) Pour $n \in \mathbb{N}$ et x > 0, calculer l'intégrale $\int_0^n t^{x-1} \left(1 \frac{t}{n}\right)^n dt$.
- (3) Démontrer le résultat souhaité.

Exercice 36. (fonction Gamma, 3)

On garde les notations de l'exercice 34. Le but de l'exercice est d'établir la formule de Stirling, qui donne un équivalent de $\Gamma(x+1)$ quand $x\to\infty$:

$$\Gamma(x+1) \sim x^x e^{-x} \sqrt{2\pi x}$$
.

- (1) Montrer que pour tout x>0, on a $\Gamma(x+1)=x^xe^{-x}\sqrt{x}\int_{\mathbb{R}}g(x,u)\,du$, où $g(x,u) = 0 \text{ si } \sqrt{x} \le -u \text{ et } g(x,u) = \exp\left(x\log\left(1 + \frac{u}{\sqrt{x}}\right) - u\sqrt{x}\right) \text{ si } \sqrt{x} > -u.$ (2) Pour u > 0, déterminer $\sup_{x \ge 1} g(x,u)$; et pour u < 0, déterminer $\sup_{x > 0} g(x,u)$.
- (3) Démontrer la formule de Stirling.

Exercice 37. Soit $f:[0,b]\to\mathbb{C}$ une fonction borélienne continue en 0, avec $f(0)\neq 0$.

- (1) On suppose qu'on a $\int_0^b e^{-\lambda u} |f(u)| du < \infty$ pour $\lambda > 0$ assez grand.
 - (a) Montrer que pour tout $\delta \in]0, b[$, on a $\int_{\delta}^{b} e^{-\lambda u} f(u) du = o\left(\frac{1}{\lambda}\right)$ quand
 - (b) Déterminer un équivalent de $\int_0^b e^{-\lambda u} f(u) du$ quand $\lambda \to \infty$.
- (2) On suppose qu'on a $\int_0^b e^{-\lambda u^2} |f(u)| du < \infty$ pour $\lambda > 0$ assez grand.

- (a) Montrer que pour tout $\delta \in]0, b[$, on a $\int_{\delta}^{b} e^{-\lambda u^{2}} f(u) du = o\left(\frac{1}{\sqrt{\lambda}}\right)$ quand $\lambda \to \infty$.
- (b) Déterminer un équivalent de $\int_0^b e^{-\lambda u^2} f(u) du$ quand $\lambda \to \infty$.

Exercice 38. (méthode de Laplace)

Soient $\varphi: [a, b] \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $f: [a, b] \to \mathbb{C}$ une fonction mesurable. On suppose que la fonction $t \mapsto e^{-\lambda \varphi(t)} f(t)$ est intégrable sur [a, b] pour $\lambda > 0$ assez grand, et on pose

$$F(\lambda) = \int_{-b}^{b} e^{-\lambda \varphi(t)} f(t) dt.$$

(1) On suppose qu'on a $\varphi'(t) > 0$ pour tout $t \in [a, b[$, et que f est continue en aavec $f(a) \neq 0$. Montrer qu'on a

$$F(\lambda) \sim \frac{f(a)}{\varphi'(a)} \frac{e^{-\lambda \varphi(a)}}{\lambda}$$

quand $\lambda \to \infty$. On pourra poser $u = \varphi(t) - \varphi(a)$ et appliquer l'exercice 37

(2) On suppose que φ est de classe \mathcal{C}^2 , avec $\varphi'(t) > 0$ pour tout $t \in [a, b[, \varphi'(a) = 0$ et $\varphi''(a) > 0$. Enfin on suppose toujours que f est continue en a avec $f(a) \neq 0$. Montrer qu'on a

$$F(\lambda) \sim \sqrt{\frac{\pi}{2}} \frac{f(a)}{\sqrt{\varphi''(a)}} \frac{e^{-\lambda \varphi(a)}}{\sqrt{\lambda}}$$

quand $\lambda \to \infty$. On pourra poser $u = \sqrt{\varphi(t) - \varphi(a)}$.

Exercice 39. Utiliser l'exercice 38 pour donner un équivalent de $\int_x^{\infty} e^{-t^2} dt$ quand $x \to \infty$.

Exercice 40. Utiliser l'exercice 38 pour donner un équivalent de l'intégrale de Wallis $W_n = \int_0^{\frac{\pi}{2}} (\cos t)^n dt$ quand $n \to \infty$.

Exercice 41. Déterminer un équivalent de l'intégrale I_n dans les cas suivants.

- (1) $I_n = \int_{-1}^1 (1 t^2)^n dt$.
- (2) $I_n = \int_0^1 [\log(1+x)]^n dt$. (3) $I_n = \int_0^\pi t^n \sin t \, dt$.

Exercice 42. Montrer que pour x > 0, on a

$$\Gamma(x+1) = x^{x+1} \int_0^\infty e^{-x(u-\log u)} du.$$

En déduire la formule de Stirling : $\Gamma(x+1) \sim x^x e^{-x} \sqrt{2\pi x}$ quand $x \to \infty$.