Dynamiques et opérateurs

Feuille d'exercices nº 7

Exercice 1. Montrer qu'il n'existe aucune mesure de probabilité borélienne sur \mathbb{R} invariante par l'application $x \mapsto x + 1$.

Exercice 2. (théorème de Markov-Kakutani)

Dans tout l'exercice, C est une partie convexe compacte (non vide) d'un evt localement convexe X. On se donne une famille $(A_i)_{i\in I}$ d'applications affines continues, $A_i:C\to C$, et on suppose que $A_i\circ A_j=A_j\circ A_i$ pour tous $i,j\in I$. Le but de l'exercice est de montrer qu'il existe un point $p\in C$ qui est laissé fixe par toutes les applications A_i . Dans ce qui suit, on note $\mathrm{Fix}(A)$ l'ensemble des points fixes d'une application A.

- (1) Montrer que $F_i = Fix(A_i)$ est compact convexe, pour tout $i \in I$.
- (2) Soit $F \subset C$ un compact convexe non vide, et soit $A: F \to F$ affine continue.
 - (a) On fixe un point $q \in F$, et pour $N \in \mathbb{N}$ on pose

$$x_N = \frac{1}{N} \sum_{n=0}^{N-1} A^n(q)$$
.

Vérifier que $x_N \in K$ pour tout N, et que $\langle x^*, A(x_N) \rangle - \langle x^*, x_N \rangle \to 0$ pour toute $x^* \in X^*$.

- (b) Montrer que $Fix(A) \neq \emptyset$.
- (3) Montrer que $Fix(A_i)$ est stable par A_j , pour tous $i, j \in I$.
- (4) Montrer que $\bigcap_{i \in J} \operatorname{Fix}(A_i) \neq \emptyset$ pour tout ensemble fini $J \subset I$, et conclure.
- (5) Application. Soit K un espace compact métrisable, et soit $(T_i)_{i\in I}$ une famille d'applications continues, $T_i: K \to K$, commutant deux à deux. Montrer qu'il existe une mesure de probabilité borélienne μ sur K qui est invariante par toutes les applications T_i .

Exercice 3. Soit K un espace compact métrisable, et soit F un fermé de K. Montrer que l'ensemble $\{\mu \in \mathcal{P}(K); \text{ supp}(\mu) \subset F\}$ est w^* -fermé dans $\mathcal{P}(K)$.

Exercice 4. Soit (μ_k) une suite de mesures boréliennes complexes sur \mathbb{T} . Montrer que (μ_k) converge préfaiblement dans $M(\mathbb{T})$ si et seulement si elle est bornée et $(\widehat{\mu}_k(n))$ converge pour tout $n \in \mathbb{Z}$.

Exercice 5. Soit K un espace compact métrisable. Montrer que les mesures de probabilité à support fini sont w^* - denses dans $\mathcal{P}(K)$.

Exercice 6. Soit Ω un espace polonais, et soit $\mathcal{P}(\Omega) \subset M(\Omega)$ le convexe constitué par les mesures de probabilité boréliennes sur Ω . Le but de l'exercice est de montrer que les points extrémaux de $\mathcal{P}(\Omega)$ sont les masses de Dirac δ_a , $a \in \Omega$.

- (1) Montrer que toute masse de Dirac est dans $\operatorname{Ext}(\mathcal{P}(\Omega))$.
- (2) Montrer que si $\mu \in \text{Ext}(\mathcal{P}(\Omega))$, alors $\mu(A) = 0$ ou 1 pour tout borélien $A \subset \Omega$.
- (3) Soit d une distance sur Ω compatible avec la topologie de Ω et soit $\mu \in \mathcal{P}(\Omega)$. Montrer que pour tout fermé $F \subset \Omega$ tel que $\mu(F) > 0$ et pour tout $\varepsilon > 0$, on peut trouver un fermé $F' \subset F$ tel que diam $(F') < \varepsilon$ et $\mu(F') > 0$.
- (4) Conclure.

Exercice 7. (Stone-Weierstrass)

Soit K un espace compact métrisable, et soit \mathcal{A} une sous-algèbre de $\mathcal{C}(K)$. On suppose que $\mathbf{1} \in \mathcal{A}$ et que $\mathcal{A}_{\mathbb{R}} = \{ \varphi \in \mathcal{A}; \ \varphi \text{ réelle} \}$ sépare les points de K. Le but de l'exercice est de montrer que \mathcal{A} est dense dans $\mathcal{C}(K)$.

- (1) Montrer que si $\mu \in \mathcal{A}^{\perp}$, alors $h\mu \in \mathcal{A}^{\perp}$ pour toute $h \in \mathcal{A}$.
- (2) On pose $C = \{ \mu \in \mathcal{A}^{\perp}; \|\mu\| \le 1 \}.$
 - (a) Montrer que si $C \neq \{0\}$, alors $\|\mu\| = 1$ pour toute $\mu \in \text{Ext}(C)$.
 - (b) Montrer que si $\mu \in \text{Ext}(C)$ et si $\mu_1, \mu_2 \in C$ vérifient $\mu_1 + \mu_2 = \mu$ et $\|\mu_1\| + \|\mu_2\| = \|\mu\|$, alors μ_1 et μ_2 sont proportionnelles à μ .
 - (c) Montrer que si $\mu \in \text{Ext}(C)$ et si $g \in \mathcal{A}$ vérifie $0 \leq g \leq 1$, alors $g\mu$ est proportionnelle à μ .
- (3) Montrer que si $a, b \in K$ et $a \neq b$, alors on peut trouver $g \in \mathcal{A}_{\mathbb{R}}$ telle que $0 \leq g \leq 1$ et g(a) < g(b).
- (4) Déduire de (2) et (3) que si $\mu \in \text{Ext}(C)$, alors $\text{supp}(|\mu|)$ contient au plus 1 point.
- (5) Conclure.

Exercice 8. Soit K un espace compact métrisable sans points isolés. On munit $\mathcal{P}(K)$ de la topologie préfaible induite par $M(K) = \mathcal{C}(K)^*$, et on note $\mathcal{P}_c(K) \subset \mathcal{P}(K)$ l'ensemble des mesures de probabilité continues. Le but de l'exercice est de montrer que $\mathcal{P}_c(K)$ est un G_δ dense de $\mathcal{P}(K)$ (de sorte qu'en particulier $\mathcal{P}_c(K) \neq \emptyset$).

(1) Soit $\varepsilon > 0$. On pose $\mathcal{U}_{\varepsilon} = \{ \mu \in \mathcal{P}(K); \ \forall x \in K : \ \mu(\{x\}) < \varepsilon \}.$

- (a) Montrer que pour $a \in K$ et $\mu \in \mathcal{P}(K)$, on a $\mu(\{x\}) < \varepsilon$ si et seulement si il existe un voisinage ouvert V de x et une fonction $f \in \mathcal{C}(K)$ positive tels que $f \geq 1$ sur V et $\int_K f \, d\mu < \varepsilon$.
- (b) En déduire que l'ensemble $\{(\mu, x) \in \mathcal{P}(K) \times K; \ \mu(\{x\}) < \varepsilon\}$ est ouvert dans $\mathcal{P}(K) \times K$.
- (c) Montrer que $\mathcal{U}_{\varepsilon}$ est un ouvert de $\mathcal{P}(K)$.
- (2) Soit $a \in K$, et soit $\varepsilon > 0$.
 - (a) Soit W un voisinage de δ_a dans $\mathcal{P}(K)$. Montrer qu'il existe un voisinage ouvert W de a vérifiant la propriété suivante : pour toute $\mu \in \mathcal{P}(K)$ telle que $\sup(\mu) \subset W$, on a $\mu \in \mathcal{W}$.
 - (b) Soient $N \in \mathbb{N}^*$ et soit $a_1, \ldots, a_N \in K$ deux à deux distincts. Montrer que si N est assez grand, alors $\mu = \frac{1}{N} \sum_{j=1}^{N} \delta_{a_j}$ appartient à $\mathcal{U}_{\varepsilon}$.
 - (c) Déduire de (a) et (b) que δ_a est dans l'adhérence de $\mathcal{U}_{\varepsilon}$.
 - (d) Observer que les $\mathcal{U}_{\varepsilon}$ sont convexes, puis montrer que $\mathcal{U}_{\varepsilon}$ est dense dans $\mathcal{P}(K)$, pour tout $\varepsilon > 0$.
- (3) Conclure.

Exercice 9. Le but de l'exercice est de montrer qu'il existe des mesures de probabilité (boréliennes) sur \mathbb{T} qui sont continues mais pas de Rajchman.

- (1) Soit $F \subset \mathbb{T}$ un ensemble fini. Montrer qu'il existe une suite strictement croissante d'entiers (m_k) telle que (ξ^{m_k}) converge pour tout $\xi \in F$, et en déduire qu'il existe une suite d'entiers (n_k) tendant vers $+\infty$ telle que $\xi^{n_k} \to 1$ pour tout $\xi \in F$.
- (2) Soit $N \in \mathbb{N}$. On pose $\mathcal{V}_N = \{ \sigma \in \mathcal{P}(\mathbb{T}); \exists n \geq N : |\widehat{\sigma}(n)| > 1/2 \}$. Montrer que \mathcal{V}_N est un ouvert de $\mathcal{P}(\mathbb{T})$, et déduire de (1) que toute mesure $\sigma \in \mathcal{P}(\mathbb{T})$ à support fini appartient à \mathcal{V}_N .
- (3) Démontrer le résultat souhaité en utilisant convenablement le théorème de Baire.

Exercice 10. Le but de l'exercice est de donner un exemple explicite d'une mesure de probabilité $\sigma \in \mathcal{P}(\mathbb{T})$ continue mais pas de Rajchman.

- (1) On note S l'ensemble des entiers $n \in \mathbb{Z}$ s'écrivant sous la forme $n = \sum_{j \in J} \varepsilon_j 5^j$, où $I \subset \mathbb{N}^*$ est fini et $\varepsilon_j = \pm 1$ pour tout $j \in J$. Montrer qu'un entier $n \in S$ s'écrit d'une seule façon sous la forme $n = \sum \varepsilon_j 5^j$.
- (2) Pour $N \in \mathbb{N}$ on note P_N le polynôme trigonométrique défini par

$$P_N(e^{it}) = \prod_{j=1}^{N} (1 + \cos(5^j t)).$$

- (a) Soit m la mesure de Lebesgue sur \mathbb{T} . Montrer que $\sigma_N = P_N m$ est une mesure de probabilité et déterminer ses coefficients de Fourier.
- (b) Montrer que la suite (σ_N) converge préfaiblement dans $\mathcal{P}(\mathbb{T})$, et déterminer les coefficients de Fourier de $\sigma = \lim \sigma_N$.
- (3) Montrer que si $n = \sum_{j \in J} \varepsilon_j 5^j \in S$ alors $n \geq 3^{\max J}$, puis montrer que dens(S) = 0.
- (4) Conclure.

Exercice 11. Soit σ une mesure de Rajchman positive sur \mathbb{T} . Montrer que toute mesure complexe absolument continue par rapport à σ est de Rajchman.

Exercice 12. ("spectral mixing theorem")

Soit H un espace de Hilbert complexe, et soit $V \in \mathcal{L}(H)$ une isométrie. On pose $\mathcal{E}_V = \text{Vect}\left(\bigcup_{\lambda \in \mathbb{T}} \ker(V - \lambda Id)\right)$. Soit également $f \in H$. Le but de l'exercice est de prouver l'équivalence des trois propriétés suivantes :

- (i) $f \perp \mathcal{E}_V$;
- (ii) $\langle V^n f, f \rangle \xrightarrow{D} 0;$
- (iii) $\langle V^n f, g \rangle \xrightarrow{D} 0$ pour tout $g \in H$.
- (1) On note σ_f la mesure spectrale pour V associée à f. Montrer que pour tout $a \in \mathbb{T}$, on a $\sigma_f(\{a\}) = \langle P_{\bar{a}}f, f \rangle$, où $P_{\bar{a}}$ est la projection orthogonale sur $\ker(V \bar{a}Id)$.
- (2) Montrer que (i) et (ii) sont équivalentes.
- (3) Soit $G = \{g \in H; \langle V^n f, g \rangle \xrightarrow{D} 0\}$. Montrer que G est un sous-espace fermé de H, et que G contient Vect $\{V^k f; k \in \mathbb{N}\}$ si (ii) est vérifiée.
- (4) Conclure.

Exercice 13. Soit H un espace de Hilbert complexe, et soit $V \in \mathcal{L}(H)$ un opérateur unitaire. Pour $f \in H$, on note σ_f la mesure spectrale pour V associée à f.

(1) Soit $f \in H$. Montrer que pour tout polynôme trigonométrique P, on a

$$||P(V)f||^2 = ||P||_{L_2(\sigma_f)}^2$$
.

- (2) Soit $f \in H$. On note H_f le sous-espace fermé de H engendré par les $V^n f$ pour $n \in \mathbb{Z}$, et $M: L_2(\sigma_f) \to L_2(\sigma_f)$ l'opérateur de multiplication par la fonction $\xi \mapsto \xi$. Montrer que $V_{|H_f}$ est unitairement équivalent à M. Plus précisément, montrer qu'il existe un unique opérateur unitaire $J: H_f \to L_2(\sigma_f)$ tel que $J(f) = \mathbf{1}$ et $V_{|H_f} = J^{-1}MJ$.
- (3) Soit $f \in H$. Déduire de (2) que si $x \in H_f$, alors $\sigma_x \ll \sigma_f$.
- (4) Montrer que la réciproque de (3) est fausse en général.

Exercice 14. Soit H un espace de Hilbert complexe, et soit $T \in \mathcal{L}(H)$ une contraction. Le but de l'exercice est de montrer que T possède des "mesures spectrales"; autrement dit, que pour tout $x \in H$, il existe une mesure positive $\sigma_x \in M(\mathbb{T})$ dont les coefficients de Fourier sont donnés par $\widehat{\sigma}_x(n) = \langle T_n x, x \rangle$, où $T_n = T^n$ pour $n \geq 0$ et $T_n = T^{*|n|}$ pour n < 0.

- (1) On suppose qu'on a ||T|| < 1.
 - (a) Montrer que pour tout $\xi \in \mathbb{T}$, l'opérateur $P_{\xi} = \sum_{n \in \mathbb{Z}} \xi^n T_n$ est bien défini.
 - (b) Établir l'identité

$$P_{\xi} = (Id - (\xi T)^*)^{-1} (Id - T^*T) (Id - \xi T)^{-1},$$

et en déduire qu'on a $\langle P_{\xi}x, x \rangle \geq 0$ pour tout $x \in H$.

(c) Montrer que si $(a_k)_{k\in\mathbb{Z}}$ est une suite de scalaires à support fini et si $x\in H$, alors

$$\sum_{i,j} a_i \overline{a_j} \langle T_{i-j} x, x \rangle = \int_{\mathbb{T}} \left| \sum_k a_k \xi^k \right|^2 \langle P_{\xi} x, x \rangle \, dm(\xi) \,,$$

où m est la mesure de Lebesgue sur \mathbb{T} .

(2) Démontrer le résultat souhaité.

Exercice 15. Soit H un espace de Hilbert complexe.

(1) Soit $S \in \mathcal{L}(H)$ une contraction. Montrer qu'on a $||x - S^*Sx||^2 \le ||x||^2 - ||Sx||^2$ pour tout $x \in H$, et en déduire que

$$\forall x,y \in H \ : \ |\langle x,y \rangle - \langle Sx,Sy \rangle| \leq \sqrt{\|x\|^2 - \|Sx\|^2} \ \|y\| \ .$$

(2) Montrer à l'aide de (1) que si $V \in \mathcal{L}(H)$ est une contraction, alors

$$\forall f \in H : \lim_{n \to \infty} \sup_{k \ge 0} |\langle V^n f, f \rangle - \langle V^{n+k} f, V^k f \rangle| = 0.$$

(3) Montrer que le "spectral mixing theorem" (exercice 12) est valable pour toute contraction $V \in \mathcal{L}(H)$.

Exercice 16. (inégalité de von Neumann)

Soit H un espace de Hilbert complexe et soit $T \in \mathcal{L}(H)$ une contraction. Le but de l'exercice est de montrer que pour tout polynôme P et pour tout $x \in H$, on a

(vN)
$$||P(T)x||^2 \le ||P||_{L_2(\sigma_x)}^2$$
,

où σ_x est la mesure spectrale pour T associée à x (voir l'exercice 14).

- (1) Soit $k \in \mathbb{N}$ et soit P un polynôme de degré k+1, $P(t) = a_0 + a_1 t + \cdots + a_{k+1} t^{k+1}$. On pose $Q(t) = P(t) - a_0$ et $u(t) = \frac{Q(t)}{t}$. Soit également $x \in H$.
 - (a) Montrer qu'on a $||Q(T)x|| \le ||u(T)x||$.

- (b) Exprimer $\langle Q(T)x, x \rangle$ à l'aide de σ_x .
- (2) Démontrer (vN) par récurrence sur le degré de P.
- (3) Déduire de (vN) que pour tout polynôme P, on a

$$||P(T)|| \le \sup\{|P(\xi)|; |\xi| = 1\}.$$

Exercice 17. Soit X un espace de Banach complexe, et soit $T \in \mathcal{L}(X)$. Soit également K un compact de \mathbb{C} . On suppose qu'il existe une constante C telle que

$$||P(T)|| \le C \sup\{|P(\xi)|; \ \xi \in K\}$$

pour tout polynôme P. En utilisant convenablement le théorème de Hahn-Banach, montrer que pour tout $(x, x^*) \in X \times X^*$, il existe une mesure $\lambda = \lambda_{x,x^*} \in M(K)$ telle que

$$\forall n \in \mathbb{N} : \langle x^*, T^n x \rangle = \int_K \xi^n d\lambda(\xi).$$

Exercice 18. (théorème de Blum-Hanson)

Soit H un espace de Hilbert complexe, et soit $T \in \mathcal{L}(H)$ une contraction. Soit également $x \in H$. On suppose qu'on a $\lim_{n\to\infty} \langle T^n x, x \rangle = 0$. En utilisant l'inégalité de von Neumann (exercice 16), montrer que pour toute suite strictement croissante d'entiers $(n_k)_{k>1}$, on a

$$\lim_{K \to \infty} \left\| \frac{1}{K} \sum_{k=1}^K T^{n_k} x \right\| = 0.$$