Dynamiques et opérateurs

Feuille d'exercices n° 2

Exercice 1. Soit B le shift sur $\ell_2(\mathbb{N})$, et soit S le shift "à droite". Soit également $\{z_i; i \geq 1\}$ un ensemble dénombrable dense dans $\ell_2(\mathbb{N})$, avec $z_i \in c_{00}$ pour tout i. Montrer que si les entiers n_i sont convenablement choisis, alors

$$x = \sum_{i=1}^{\infty} 2^{-n_i} S^{n_i}(z_i)$$

est bien défini et est un vecteur hypercyclique pour T=2B.

Exercice 2. Soit $\mathbb{D} = \{s \in \mathbb{C}; |s| < 1\}$, le disque unité de \mathbb{C} . Pour $s \in \mathbb{D}$, on définit $x_s \in \ell_2(\mathbb{N})$ par $x_s = (s^i)_{i \in \mathbb{N}}$. Montrer que $\text{Vect}\{x_s; s \in U\}$ est dense dans $\ell_2(\mathbb{N})$, pour tout ouvert non vide $U \subset \mathbb{D}$.

Exercice 3. Soit B le shift sur $\ell_2(\mathbb{N})$. Montrer que T=2B vérifie le critère de Godefroy-Shapiro.

Exercice 4. Soit $\mathbf{w} = (w_n)_{n\geq 1}$ une suite bornée de nombres complexes vérifiant $\inf_n |w_n| > 0$. On note $B_{\mathbf{w}}$ le shift à poids associé sur $\ell_2(\mathbb{N})$, et on pose $T = Id + B_{\mathbf{w}}$.

- (1) Déterminer les valeurs propres de T, et les sous-espaces propres associés.
- (2) Montrer que T vérifie le critère de Godefroy-Shapiro.

Exercice 5. Soit D l'opérateur de dérivation sur $H(\mathbb{C})$. Justifier l'identité $\tau_a = e^{aD}$ (pour tout $a \in \mathbb{C}$), et en déduire qu'un opérateur T sur $H(\mathbb{C})$ commute avec D si et seulement si il commute avec tous les opérateurs de translation τ_a .

Exercice 6. Montrer directement (i.e. sans utiliser le théorème de Godefroy-Shapiro), que l'opérateur de dérivation $D: H(\mathbb{C}) \to H(\mathbb{C})$ vérifie le critère de Kitai.

Exercice 7. Soit $a \in \mathbb{C} \setminus \{0\}$. Montrer à l'aide du théorème de Runge que l'opérateur de translation $\tau_a = H(\mathbb{C}) \to H(\mathbb{C})$ est topologiquement mélangeant.

Exercice 8. Soit Ω un ouvert connexe de \mathbb{C} . On note $H(\Omega)$ l'espace des fonctions holomorphes sur Ω , muni de la topologie de la convergence uniforme sur tout compact, et $H(\Omega,\Omega)$ l'ensemble des fonctions φ holomorphes sur Ω telles que $\varphi(\Omega) \subset \Omega$. Si $\varphi \in H(\Omega,\Omega)$, on note $C_{\varphi}: H(\Omega) \to H(\Omega)$ l'opérateur défini par $C_{\varphi}(f) = f \circ \varphi$. On dit que C_{φ} est l'**opérateur de composition** associé à φ .

- (1) Montrer que si C_{φ} est hypercyclique, alors φ est nécessairement injective et possède la propriété suivante : pour tout compact $K \subset \Omega$, on peut trouver un entier n tel que $\varphi^n(K) \cap K = \emptyset$.
- (2) Dans cette question, on prend $\Omega = \mathbb{C}$.
 - (a) Montrer que si $\varphi = \mathbb{C} \to \mathbb{C}$ est holomorphe et non polynomiale, alors $\varphi(\{z \in \mathbb{C}; |z| > 1\})$ est dense dans \mathbb{C} , et en déduire que si $\varphi \in H(\mathbb{C}, \mathbb{C})$ est injective, alors φ est une fonction polynomiale de degré 1.
 - (b) Montrer que les seuls opérateurs de composition hypercycliques sur $H(\mathbb{C})$ sont les opérateurs de translation τ_a , $a \neq 0$.
- (3) Dans cette question, on prend $\Omega = \mathbb{C}^*$.
 - (a) Montrer que si $\varphi \in H(\mathbb{C}^*, \mathbb{C}^*)$ est injective, alors φ est de la forme $\varphi(z) = az$ ou $\varphi(z) = \frac{a}{z}$, pour une certaine constante $a \neq 0$.
 - (b) Montrer qu'il n'existe pas d'opérateur de composition hypercyclique sur $H(\mathbb{C}^*)$.

Exercice 9. Montrer que l'opérateur de dérivation sur $H(\mathbb{C})$ est un quasi-facteur du shift sur $c_0(\mathbb{N})$.

Exercice 10. Soit $\omega : \mathbb{R}_+ \to \mathbb{R}$ une fonction continue strictement positive telle que $\sup_{t\geq 0} \frac{\omega(t)}{\omega(t+1)} < \infty$. On note $L_1(\mathbb{R}_+,\omega)$ l'ensemble des (classes d'équivalences de) fonctions mesurables $f: \mathbb{R}_+ \to \mathbb{C}$ vérifiant $\int_0^\infty |f(t)| \, \omega(t) \, dt < \infty$, muni de sa norme naturelle :

$$||f|| = \int_0^\infty |f(t)| \,\omega(t) \,dt.$$

- (1) Justifier brièvement que $L_1(\mathbb{R}_+, \Omega)$ est un espace de Banach séparable et que les fonctions continues à support compact sont denses dans $L_1(\mathbb{R}_+, \omega)$.
- (2) Montrer qu'on définit un opérateur borné $B: L_1(\mathbb{R}_+, \omega) \to L_1(\mathbb{R}_+, \omega)$ en posant Bf(t) = f(t+1).
- (3) Montrer que si le "poids" ω vérifie $\lim_{t\to\infty}\omega(t)=0$, alors B est topologiquement mélangeant.
- (4) On suppose que ω vérifie $\liminf_{t\to\infty} \omega(t) = 0$, et satisfait de plus à la condition de "régularité" suivante : il existe une fonction continue $C: \mathbb{R}_+ \to \mathbb{R}_+$ telle que

(*)
$$\forall s, t \ge 0 : \omega(t) \le C(s) \, \omega(t+s) \, .$$

- (a) Pour $k \in \mathbb{N}$, on pose $\varepsilon_k = \frac{2^{-k}}{\sup_{s \in [0,k+1]} C(s)}$. Justifier l'existence d'une suite $(t_k) \subset \mathbb{R}_+$ vérifiant $t_{k+1} \geq 1 + t_k$ et $\omega(t_k + k) \leq \varepsilon_k$ pour tout k.
- (b) On note n_k la partie entière de t_k . Montrer que $\omega(t + n_k)$ tend vers 0 uniformément sur tout intervalle [0, A].
- (c) Montrer que l'opérateur B est hypercyclique.
- (5) On suppose que B est hypercyclique.
 - (a) On pose $c = \inf_{t \in [0,1]} \omega(t)$. Montrer que pour tout $\varepsilon > 0$ et pour tout $N \in \mathbb{N}$, on peut trouver un entier n > N et $f \in L_1(\mathbb{R}_+, \omega)$ tels que $\int_0^1 |f(t+n) 1| \omega(t) dt < \frac{c}{2}$ et $\int_1^\infty |f(t)| \omega(t) dt < \varepsilon$. Montrer ensuite qu'on a $\int_n^{n+1} |f(t)| dt \ge \frac{1}{2}$ et $\int_n^{n+1} |f(t)| \omega(t) dt < \varepsilon$.
 - (b) Montrer que $\liminf_{t\to\infty} \omega(t) = 0$.
- (6) Montrer que si B est topologiquement mélangeant et si ω vérifie (*), alors $\lim_{t\to\infty}\omega(t)=0$.

Exercice 11. Soit $p \in [1, \infty[$, et soit A > 0. Pour $s \in \mathbb{C}$ vérifiant $\text{Re}(s) > -\frac{1}{p}$, on note ϕ_s la fonction de $L_p(]0, A[)$ définie par $\phi_s(x) = x^s$.

- (1) Justifier qu'on a bien $\phi_s \in L_p(]0, A[)$.
- (2) On note q l'exposant conjugué de p. Montrer que si $g \in L_q(]0, A[)$, alors la formule $F(s) = \int_0^A \phi_s(x)g(x) dx$ définit une fonction holomorphe sur l'ouvert $\Omega = \{s \in \mathbb{C}; \operatorname{Re}(s) > -\frac{1}{p}\}.$
- (3) Que peut-on dire d'une fonction $g \in L_q(]0, A[)$ vérifiant $\int_0^A x^n g(x) dx = 0$ pour tout $n \in \mathbb{N}$?
- (4) Montrer que Vect $\{\phi_s; s \in I\}$ est dense dans $L_p(]0, A[)$, pour tout intervalle $I \subset]-\frac{1}{p}, \infty[$ (non réduit à un point).

Exercice 12. Soit $p \in]1, \infty[$, et soit A > 0. Pour $f \in L_p(]0, A[)$, on définit une fonction $Tf :]0, A[\to \mathbb{C}$ par

$$Tf(x) = \frac{1}{x} \int_0^x f(t) dt.$$

(1) Vérifier l'identité $Tf(x) = \int_0^1 f(xs) ds$, et en déduire que si $f \in L_p(]0, A[)$, alors $Tf \in L_p(]0, A[)$ et

$$||Tf||_{L_p} \le q ||f||_{L_p}$$

- où q est l'exposant conjugué de p. (On peut par exemple raisonner par dualité, ou utiliser l'inégalité de Minkowski pour les intégrales).
- (2) Montrer que l'opérateur $T: L_p(]0,A[) \to L_p(]0,A[)$ vérifie le critère de Godefroy-Shapiro.