Dynamiques et opérateurs

Feuille d'exercices nº 1

Exercice 1. Montrer que tout espace compact métrisable est séparable.

Exercice 2. Montrer que dans un espace métrique séparable (X, d), il n'est pas possible de trouver une famille non-dénombrable de points $(f_i)_{i\in I}$ qui soit ε -séparée pour un certain $\varepsilon > 0$, i.e. $d(f_i, f_j) \ge \varepsilon$ pour $i \ne j$. En déduire que les espaces $\ell_{\infty}(\mathbb{N})$ et $L_{\infty}(0, 1)$ ne sont pas séparables.

Exercice 3. Soit X un espace vectoriel topologique. Montrer que les propriétés suivantes sont équivalentes.

- (i) X est séparable;
- (ii) il existe une partie $\mathcal{D} \subset X$ dénombrable et totale;
- (iii) il existe une suite $(E_N)_{N\in\mathbb{N}}$ de sous-espaces de dimension finie telle que $\bigcup_{N\in\mathbb{N}} E_N$ est dense dans X.

Exercice 4. Soit K un espace compact métrisable. On note $\mathcal{C}(K)$ l'espace des fonctions continues sur K, muni de la norme $\|\cdot\|_{\infty}$.

- (1) Soit d une distance compatible avec la topologie de K, et soit $\{x_n; n \in \mathbb{N}\}$ un ensemble dénombrable dense dans K. On définit des fonctions $f_n \in \mathcal{C}(K)$ par $f_n(x) = d(x, x_n)$. Montrer que la suite (f_n) sépare les points de K: si $x, y \in K$ et $x \neq y$, on peut trouver un entier n tel que $f_n(x) \neq f_n(y)$.
- (2) Montrer que l'espace de Banach $\mathcal{C}(K)$ est séparable.

Exercice 5. Soit Ω un espace métrisable séparable, et soit μ une mesure borélienne positive sur Ω , supposée *sigma-finie*. Soit également $p \in [1, \infty[$. Le but de l'exercice est de montrer que l'espace de Banach $L_p(\Omega, \mu)$ est séparable.

(1) Dans cette question, on suppose que la mesure μ est finie.

- (a) Soit $(V_i)_{i\in\mathbb{N}}$ une base dénombrable d'ouverts pour Ω . On note \mathcal{V} la famille des ouverts $V \subset \Omega$ qui sont réunion d'un nombre fini de V_i . Montrer que pour tout ouvert $W \subset X$ et pour tout $\alpha > 0$, on peut trouver $V \in \mathcal{V}$ tel que $V \subset W$ et $\mu(W \setminus V) < \alpha$. Montrer également que pour un tel V, on a $\|\mathbf{1}_V \mathbf{1}_W\|_{L_p} < \alpha^{1/p}$.
- (b) On admet que la mesure μ est $r\acute{e}guli\grave{e}re$, ce qui signifie que pour tout borélien $A \subset \Omega$ et pour tout $\alpha > 0$, on peut trouver un ouvert W tel que $A \subset W$ et $\mu(W \setminus A) < \alpha$. Déduire de (a) que pour tout borélien $A \subset \Omega$ et pour tout $\varepsilon > 0$, on peut trouver $V \in \mathcal{V}$ tel que $\|\mathbf{1}_V \mathbf{1}_A\|_{L_p} < \varepsilon$.
- (c) En déduire la séparabilité de $L_p(\Omega, \mu)$.
- (2) Démontrer le résultat souhaité pour une mesure μ sigma-finie.

Exercice 6. (théorème de récurrence de Birkhoff)

Dans tout l'exercice, K est un espace topologique compact et $T: K \to K$ est une application continue. Un point $a \in K$ est dit **récurrent** pour T si, pour tout voisinage V de a, il existe une infinité d'entiers n tels que $T^n(a) \in V$. Le but de l'exercice est de montrer que T possède au moins 1 point récurrent.

- (1) On note \mathcal{I} la famille de tous les compacts non vides $L \subset K$ vérifiant $T(L) \subset L$. Montrer que \mathcal{I} possède un élément minimal pour l'inclusion.
- (2) Montrer que si $L \in \mathcal{I}$ est minimal pour l'inclusion et si $x \in L$, alors O(x,T) est dense dans L.
- (3) Conclure.

Exercice 7. (théorème de Kronecker)

Soient $\theta_1, \dots \theta_d \in \mathbb{R}$ tels que $\pi, \theta_1, \dots \theta_d$ sont **rationnellement indépendants**, i.e. linéairement indépendants sur \mathbb{Q} . On pose $g = (e^{i\theta_1}, \dots, e^{i\theta_d}) \in \mathbb{T}^d$. Le but de l'exercice est de montrer que l'ensemble $\{g^n; n \geq 1\}$ est dense dans \mathbb{T}^d , autrement dit que la "rotation" $R_g : \mathbb{T}^d \to \mathbb{T}^d$ est transitive.

(1) Pour $\gamma = (\gamma_1, \dots, \gamma_d) \in \mathbb{Z}^d$, on note $e_{\gamma} \in \mathcal{C}(\mathbb{T}^d)$ la fonction définie par

$$e_{\gamma}(\xi_1,\ldots,\xi_d)=\xi_1^{\gamma_1}\cdots\xi_d^{\gamma_d}$$

Vérifier que les e_{γ} sont des **caractères** de \mathbb{T}^d , c'est-à-dire des homomorphismes du groupe \mathbb{T}^d dans \mathbb{T} .

- (2) Montrer que $\mathcal{P} = \text{Vect}\{e_{\gamma}; \ \gamma \in \mathbb{Z}^d\}$ est dense dans $\mathcal{C}(\mathbb{T}^d)$.
- (3) Montrer que si $\gamma \neq (0, ..., 0)$ alors $e_{\gamma}(g) \neq 1$, et en déduire la limite de $\frac{1}{N} \sum_{n=1}^{N} e_{\gamma}(g^{n})$ quand $N \to \infty$.

(4) On note m la mesure de Lebesgue normalisée sur \mathbb{T}^d . Calculer $\int_{\mathbb{T}^d} e_{\gamma} dm$ pour tout $\gamma \in \mathbb{Z}^d$, puis montrer que pour toute fonction $u \in \mathcal{C}(\mathbb{T}^d)$, on a

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N u(g^n)=\int_{\mathbb{T}^d}u\,dm\,.$$

- (5) Montrer que pour tout ouvert $V \subset \mathbb{T}^d$, on peut trouver une fonction $u \in \mathcal{C}(\mathbb{T}^d)$ positive, non identiquement nulle, et nulle en dehors de V.
- (6) Conclure.

Exercice 8. Soit $T: \mathbb{T} \to \mathbb{T}$ l'application définie par $T(\xi) = \xi^2$. Montrer que T est topologiquement mélangeante.

Exercice 9. Montrer que si B est le shift (vers la gauche) sur $\mathbb{K}^{\mathbb{N}}$, alors λB est topologiquement mélangeant pour tout $\lambda \neq 0$. À l'inverse, montrer qu'il n'est pas possible de trouver, sur un espace vectoriel normé $X \neq \{0\}$, un opérateur T tel que λT soit hypercyclique pour tout $\lambda \neq 0$.

Exercice 10. Dans cet l'exercice, on note $c_0(\mathbb{R}_+)$ l'espace de toutes les fonctions $f: \mathbb{R}_+ \to \mathbb{C}$ bornées et tendant vers 0 à l'infini. On munit $c_0(\mathbb{R}_+)$ de la norme $\|\cdot\|_{\infty}$ (qui en fait un espace de Banach).

- (1) Montrer que $c_0(\mathbb{R}_+)$ n'est pas séparable.
- (2) Soit $B: c_0(\mathbb{R}_+) \to c_0(\mathbb{R}_+)$ l'application linéaire définie par Bf(t) = f(t+1). Pourquoi B est-elle continue?
- (3) Soient $u, v \in c_0(\mathbb{R}_+)$, et soit $\varepsilon > 0$. On choisit un entier N tel que $|u(t)| < \varepsilon$ pour $t \geq N$. Soit enfin $n \geq N$ et soit $f \in c_0(\mathbb{R}_+)$ la fonction définie par

$$f(t) = \begin{cases} u(t) & 0 \le t < n \\ 2^{-n}v(t-n) & t \ge n \end{cases}$$

Montrer qu'on a $||f - u||_{\infty} \le \varepsilon + 2^{-n} ||v||_{\infty}$.

- (4) Montrer que l'opérateur T = 2B est topologiquement mélangeant.
- (5) L'opérateur T est-il hypercyclique?