Feuille d'exercices n° 1

Exercice 1. (intégrales et primitives de fractions rationnelles)

- (1) Calculer les intégrales $I_1 = \int_1^3 \frac{dx}{(x-5)(x-8)}$ et $I_2 = \int_0^1 \frac{x}{(x+4)(x+3)} dx$. (2) Calculer les intégrales $I_1 = \int_0^1 \frac{dx}{x^2+3x+2}$ et $I_2 = \int_4^5 \frac{x+1}{x^2-x-6} dx$ (3) Déterminer les primitives de $f(x) = \frac{1}{x^2+3x+5}$ et $g(x) = \frac{x+2}{x^2+x+3}$. (4) Calculer les intégrales $I_1 = \int_3^4 \frac{4x^2+3}{x^3-x^2+4x-4} dx$ et $I_2 = \int_0^2 \frac{x^2+6x+6}{x^3-x^2-5x-3} dx$.

Exercice 2. Calculer l'intégrale $I = \int_0^{+\infty} \frac{dx}{1+x^3}$

Exercice 3. Le but de l'exercice est de calculer l'intégrale $I = \int_{-\infty}^{+\infty} \frac{dx}{x^4 + 1}$

- (1) Soit $F: \mathbb{R} \to \mathbb{R}$ une fonction de la forme $F(x) = \frac{\alpha x + \beta}{x^2 + bx + c}$, où on suppose que $\Delta = b^2 - 4c \text{ est } < 0.$
 - (a) Montrer qu'on peut écrire $F(x) = A \frac{(x^2+bx+c)'}{x^2+bx+c} + \frac{B}{x^2+bx+c}$, où les constantes

 - A et B sont à déterminer. (b) Calculer $\lim_{R\to\infty} \int_{-R}^{R} \frac{(x^2+bx+c)'}{x^2+bx+c} dx$. (c) Montrer qu'on peut mettre x^2+bx+c sous la forme $(x+p)^2+q^2$, où p et q sont à déterminer, puis calculer $\int_{-\infty}^{+\infty} \frac{dx}{x^2+bx+c}$ en fonction de q.
 - (d) Déduire des questions précédentes qu'on a

$$\lim_{R \to \infty} \int_{-R}^{R} F(x) dx = \pi \frac{2\beta - b\alpha}{\sqrt{4c - b^2}}.$$

(2) Trouver des constantes $\alpha, \beta, \alpha', \beta'$ telles qu

$$\frac{1}{x^4 + 1} = \frac{\alpha x + \beta}{x^2 + \sqrt{2}x + 1} + \frac{\alpha' x + \beta'}{x^2 - \sqrt{2}x + 1} \cdot$$

(3) Calculer l'intégrale I.

Exercice 4. Déterminer les primitives de $f(x) = (x^2 + x + 1)e^{3x}$.

Exercice 5. Déterminer les primitives de $f(x) = (3x^2 - x + 2)\sin(4x)$.

Exercice 6. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} (\sin x)^n dx$.

(1) Montrer qu'on a $I_{n+2} = I_n - \int_0^{\pi/2} [\cos x (\sin x)^n] \cos x \, dx$.

(2) En déduire, à l'aide d'une intégration par parties, la relation de récurrence

$$I_{n+2} = \frac{n+1}{n+2} I_n \, .$$

(3) Calculer I_8 et I_9 .

Exercice 7. Pour $n \in \mathbb{N}$ et $\alpha > 0$, calculer l'intégrale $\int_0^\infty t^n e^{-\alpha t} dt$.

Exercice 8. Pour x > 0, on pose $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$. Trouver une relation entre $\Gamma(x+1)$ et $\Gamma(x)$, et en déduire la valeur de $\Gamma(n+1)$ pour $n \in \mathbb{N}$.

Exercice 9. Pour toute fonction $u: \mathbb{R} \to \mathbb{C}$ sommable sur \mathbb{R} et pour $\lambda \in \mathbb{R}$, on pose

$$\widehat{u}(\lambda) = \int_{-\infty}^{+\infty} u(t)e^{-i\lambda t}dt$$
.

- (1) Justifier la définition en montrant que $u(x)e^{-i\lambda x}$ est sommable sur \mathbb{R} .
- (2) Calculer $\widehat{u}(\lambda)$ lorsque u est la fonction valant 1 sur [-1,1] et 0 en dehors de [-1,1].
- (3) Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction continue identiquement nulle en dehors d'un intervalle [a, b].
 - (a) Montrer que si f est de classe C^1 , alors $\widehat{f}'(\lambda) = i\lambda \widehat{f}(\lambda)$.
 - (b) Si f est de classe \mathcal{C}^k , exprimer $\widehat{f^{(k)}}(\lambda)$ en fonction de $\widehat{f}(\lambda)$.
 - (c) Montrer que si f est de classe C^{∞} , alors $\lim_{\lambda \to \infty} \lambda^n \widehat{f}(\lambda) = 0$ pour tout $n \in \mathbb{N}$.

Exercice 10. Pour $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{(1+x^2)^n}$ et $F_n(x) = \int f_n(x) dx$.

- (1) Calculer $F_1(x)$.
- (2) En primitivant $f_n(x)$ par parties, établir la relation

$$2nF_{n+1} = \frac{x}{(x^2+1)^n} + (2n-1)F_n(x).$$

(3) En déduire $F_2(x)$.

Exercice 11. En utilisant l'exercice 10, déterminer les primitives de $f(x) = \frac{1}{(x^2+x+1)^2}$

Exercice 12. Calculer l'intégrale $\int_0^1 \frac{dx}{(1+x^2)^2}$ en posant $x = \tan u$.

Exercice 13. Soit $\beta > 0$. Calculer l'intégrale $I = \int_1^\infty \frac{dx}{x(1+x^\beta)}$ en posant $u = x^{-\beta}$.

Exercice 14. Déterminer pour quelles valeurs de $\beta > 0$ la fonction $f(x) = \frac{1}{x(\ln x)^{\beta}}$ est sommable sur $[2, \infty[$.

Exercice 15. Soient $\alpha, \beta > 0$. Pour t > 0, on pose $f(t) = \frac{(1+t)^{\alpha}}{(1+t^2)^{\beta}}$. Montrer que si $2\beta - \alpha = 2$, alors $\int_{[0,1]} f = \int_{[1,\infty[} f$.

Exercice 16. Calculer l'intégrale $\int_0^1 x^2 \sqrt{1-x^2}$ en utilisant le changement de variable $x = \sin t$.

Exercice 17. Déterminer les primitives de $f(x) = \tan x \, \text{sur }] - \frac{\pi}{2}, \frac{\pi}{2} [$.

Exercice 18. Déterminer les primitives de $f_k(x) = (\cos x)^k$ pour k = 2, 3, 4.

Exercice 19. Soit $n \in \mathbb{N}$. Déterminer les primitives de $f(x) = (\sin x)^n \cos x$ et $g(x) = (\cos x)^n (\sin x)^3$.

Exercice 20. Calculer $\int_0^{\pi/2} \frac{\sin^3 t}{1+\cos t} dt$ en posant $u = \cos t$, et $\int_0^{\pi/2} \frac{dt}{2+\sin t}$ en posant $u = \tan(t/2)$.

Exercice 21. Déterminer les primitives de $f(x) = \frac{1}{\sin x} \sin [0, \pi[$ en posant $u = \tan(x/2)$.

Exercice 22. Soit $f:[0,\infty[\to\mathbb{R}$ définie par $f(t)=\sin(t^{1/4})e^{-t^{1/4}}$.

- (1) Montrer que f est sommable sur $[0, \infty[$. Dans la suite, on pose $I = \int_0^\infty f(t) dt$.
- (2) Montrer que I est la partie imaginaire de $J = 4 \int_0^\infty u^3 e^{-\lambda u} du$, où $\lambda = 1 i$.
- (3) Calculer I.

Exercice 23. Le but de l'exercice est de calculer l'intégrale $I = \int_0^{\pi/2} \ln(\sin t) dt$.

- (1) En remarquant que $\sin t = \cos(\frac{\pi}{2} t)$, montrer qu'on a $I = \int_0^{\pi/2} \ln(\cos t) dt$.
- (2) En déduire que $2I = \int_0^{\frac{\pi}{2}} \ln(\cos t \sin t) dt$, puis que

$$I = -\frac{\pi}{2}\ln(2) + \frac{1}{2}\int_0^{\pi/2}\ln(\sin 2t) dt.$$

- (3) Montrer qu'on a $\int_{\frac{\pi}{2}}^{\pi} \ln(\sin u) du = I$, puis que $\int_{0}^{\pi} \ln(\sin u) du = 2I$.
- (4) calculer I.

Exercice 24. Pour t > 0, on pose $f(t) = \int_0^1 \frac{dy}{(y^4 + t^4)^{1/4}}$.

- (1) Montrer qu'on a f(t)=g(1/t), où g est définie par $g(x)=\int_0^x \frac{du}{(1+u^4)^{1/4}}$.
- (2) Montrer que la fonction $t \mapsto \ln(t) + f(t)$ est croissante sur $]0, \infty[$.

Exercice 25. Soit $f:[1,\infty[\to\mathbb{C} \text{ la fonction définie par } f(t)=\frac{e^{it}}{t}$

- (1) Montrer que f n'est pas sommable sur $[1, \infty[$.
- (2) Montrer à l'aide d'une intégration par parties que si $1 \le X < X'$, alors

$$\left| \int_{X}^{X'} f(t) \, dt \right| \le \frac{1}{X} + \frac{1}{X'} + \int_{X}^{X'} \frac{dt}{t^2} = \frac{2}{X}.$$

(3) Montrer que $\int_1^\infty f(t) dt$ existe en tant qu'intégrale généralisée.

Exercice 26. En utilisant la même méthode que dans l'exercice 25, montrer que $\int_0^\infty \cos(x^2) dx$ existe en tant qu'intégrale généralisée.

Exercice 27. (formule de Taylor)

Soit $f:I\to\mathbb{C}$ de classe \mathcal{C}^∞ sur un intervalle $I\subset\mathbb{R}$. Montrer par récurrence sur $n\in\mathbb{N}$ que si $a,b\in I$, alors

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(a) + \dots + \frac{(b-a)^n}{n!}f^{(n)}(a) + R_n,$$

où le "reste" R_n est donné par la formule

$$R_n = \int_0^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt.$$

Exercice 28. En utilisant la formule de Taylor, montrer que pour tout $x \in \mathbb{R}$, on a

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot$$

Exercice 29. Calculer les dérivées successives de la fonction $f(x) = \frac{1}{1-x}$, puis montrer en utilisant la formule de Taylor que si $x \in]-1,1[$ alors

$$-\ln(1-x) = \sum_{k=1}^{\infty} \frac{x^k}{k} \cdot$$