Feuille d'exercices n° 3

Exercice 1. Soit $P(z) = z^2 + az + b$ un polynôme de degré 2 à coefficients complexes, avec $b \neq 0$. On note α et β les racines complexes de P, et on pose f(z) = 1/P(z).

- (1) Montrer que la fonction f est développable en série entière dans un disque D(0,r), et déterminer le plus grand r possible.
- (2) On note c_n les coefficients du développement en série entière de f dans le disque D(0,r). Montrer que la suite (c_n) vérifie la relation de récurrence

$$bc_n + ac_{n-1} + c_{n-2} = 0.$$

- (3a) On suppose que $\alpha \neq \beta$. Décomposer f(z) en éléments simples, puis exprimer les coefficients c_n en fonction de α et β .
- (3b) On suppose que $\alpha = \beta$. En observant que f(z) est la dérivée de $g(z) = \frac{1}{\alpha z}$, exprimer les c_n en fonction de α .
 - (4) Dans cette question, on prend $P(z) = 1 z z^2$. Montrer que les c_n sont des entiers positifs, et donner une formule explicite pour les c_n .

Exercice 2. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe, $f(z) = \sum_{n=0}^{\infty} c_n z^n$. On suppose qu'on a $f(x) \in \mathbb{R}$ pour tout $x \in]-1,1[$. Montrer que tous les c_n sont réels.

Exercice 3. Soit f une fonction holomorphe sur le disque unité \mathbb{D} , $f(z) = \sum_{n=0}^{\infty} c_n z^n$. On suppose qu'on a $|f(z)| \le 1/(1-|z|)$ pour tout $z \in \mathbb{D}$.

- (1) Montrer qu'on a $|c_n| \leq \frac{1}{r^n(1-r)}$ pour tout $n \in \mathbb{N}$ et pour tout $r \in]0,1[$.
- (2) En déduire que pour tout $n \in \mathbb{N}$, on a $|c_n| \le e \times (n+1)$.

Exercice 4. (inégalité de Bohr)

- (1) Soit g une fonction holomorphe sur le disque unité \mathbb{D} , $g(z) = \sum_{n=0}^{\infty} b_n z^n$. On suppose que la fonction Re(g) est positive.
 - (a) Montrer que pour tout $n \ge 1$ et pour tout $r \in [0, 1]$, on a

$$b_n r^n = \frac{1}{2\pi} \int_0^{2\pi} 2 \text{Re} \left[g(re^{i\theta}) \right] e^{-in\theta} d\theta.$$

- (b) En déduire qu'on a $|b_n| \leq 2\text{Re}(b_0)$ pour tout $n \geq 1$. (2) Soit $f : \mathbb{D} \to \mathbb{C}$ une fonction holomorphe, $f(z) = \sum_{n=0}^{\infty} a_n z^n$. On suppose qu'on a $|f(z)| \leq 1$ pour tout $z \in \mathbb{D}$.
 - (a) Déduire de (1) qu'on a $|a_n| \le 2(1 \text{Re}(a_0))$ pour tout $n \ge 1$.
 - (b) Montrer qu'en fait $|a_n| \leq 2(1-|a_0|)$ pour tout $n \geq 1$. (Changer de fonction f).

(c) En déduire l'inégalité suivante :

$$\sum_{n=0}^{\infty} |a_n| (1/3)^n \le 1.$$

Exercice 5. Soit f une fonction holomorphe sur le disque unité \mathbb{D} . On suppose que f s'annule en un point $z_0 \in \mathbb{D}$. Pour r < 1, on pose $M(r) = \sup\{|f(z)|; |z| = r\}$.

(1) Soit r tel que $|z_0| < r < 1$. Montrer qu'on a

$$2i\pi f(0) = -\int_{\partial D(0,r)} \frac{f(z)}{z} \sum_{n=1}^{\infty} \left(\frac{z_0}{z}\right)^n dz.$$

(2) En déduire que si $|z_0| < r < 1$, alors

$$|f(0)| \le \frac{M(r)}{r - |z_0|} |z_0|.$$

Exercice 6. Montrer que si $f(z) = \sum_{0}^{\infty} c_n z^n$ est une fonction holomorphe dans le disque unité \mathbb{D} , alors on a

$$\sum_{n=0}^{\infty} \frac{|c_n|^2}{n+1} = \frac{1}{\pi} \int_{\mathbb{D}} |f(z)|^2 dx dy.$$

Exercice 7. Dans tout l'exercice, f est une fonction entière, $f(z) = \sum_{0}^{\infty} c_n z^n$. On suppose qu'il existe deux constantes A et C telles que

$$\forall z \in \mathbb{C} : |f(z)| \le Ae^{C|z|}.$$

- (1) Montrer qu'on a $|c_n|r^n \leq Ae^{Cr}$ pour tout $n \in \mathbb{N}$ et pour tout r > 0.
- (2) En choisissant convenablement r dans (1), montrer que pour tout $n \in \mathbb{N}$, on a

$$|c_n| \le A \left(\frac{Ce}{n}\right)^n$$
.

(3) Montrer que la série entière $\sum n!c_nz^{n+1}$ a un rayon de convergence au moins égal à 1/C. Pour |w| > C, on posera

$$g(w) = \sum_{n=0}^{\infty} \frac{n!c_n}{w^{n+1}} \cdot$$

(4) Montrer que pour toute fonction entière h et pour tout r > C, on a

$$\frac{1}{2i\pi} \int_{\partial D(0,r)} g(w)h(w) dw = \sum_{n=0}^{\infty} c_n h^{(n)}(0) .$$

(5) Montrer que pour |w| > C, on peut écrire

$$g(w) = \frac{1}{w} \int_0^\infty f\left(\frac{t}{w}\right) e^{-t} dt .$$

(6) Déterminer la fonction g lorsque $f(z) = e^z$ ou $f(z) = \sin z$.

Exercice 8. Soit Ω un ouvert connexe de \mathbb{C} . Montrer que si f et g sont des fonctions holomorphes sur Ω telles que fg = 0, alors f = 0 ou g = 0.

Exercice 9. Soit f une fonction entière vérifiant f(1) = 1 et f(2iy) = 4f(iy) pour tout $y \in [2,3]$.

- (1) Pourquoi a-t-on f(2x) = 4f(x) pour tout $x \in [0, 1]$?
- (2) Calculer $f(2^{-k})$ pour tout $k \in \mathbb{N}$, puis déterminer f.

Exercice 10. Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière. On suppose que la fonction u = Re(f) est bornée. Montrer que f est constante. (Considérer $g = e^f$).

Exercice 11. Soit Ω un ouvert de \mathbb{C} , et soit $f:\Omega\to\mathbb{C}$ holomorphe.

- (1) On suppose que $f(\Omega)$ n'est pas dense dans \mathbb{C} . Montrer qu'on peut trouver $a \in \mathbb{C}$ tel que la fonction $z \mapsto 1/(f(z) a)$ est bien définie et bornée sur Ω .
- (2) On suppose que $\Omega = \mathbb{C}$ et que f est non-constante. Montrer que $f(\mathbb{C})$ est dense dans \mathbb{C} .

Exercice 12. Soit f une fonction entière. On suppose qu'on a f(z+1) = f(z) = f(z+i) pour tout $z \in \mathbb{C}$.

- (1) On note Q le carré de sommets, 0, 1, 1+i, i. Montrer que pour tout $z \in \mathbb{C}$, on peut trouver $w \in Q$ tel que f(z) = f(w).
- (2) Montrer que f est constante.

Exercice 13. (transformations de Möbius)

Soit $a \in \mathbb{D}$. Pour $z \neq 1/\overline{a}$, on pose $\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$.

- (1) Calculer $|\varphi_a(\zeta)|$ pour $\zeta \in \partial \mathbb{D}$.
- (2) En déduire qu'on a $|\varphi_a(z)| < 1$ pour tout $z \in \mathbb{D}$.
- (3) Montrer que si $z \in \mathbb{D}$, alors

$$1 - |\varphi_a(z)|^2 = \frac{\left(1 - |a|^2\right) \left(1 - |z|^2\right)}{\left|1 - \overline{a}z\right|^2},$$

et en déduire à nouveau qu'on a $|\varphi_a(z)| < 1$ pour tout $z \in \mathbb{D}$.

(4) Montrer que la restriction de φ_a à \mathbb{D} est une bijection holomorphe de \mathbb{D} sur \mathbb{D} , et déterminer sa réciproque.

Exercice 14. Soit f une fonction holomorphe dans le disque unité \mathbb{D} . Pour r < 1, on pose

$$I(r) = \int_0^{2\pi} |f(re^{i\theta})| d\theta.$$

- (1) Soit $\phi:[0,2\pi]\to\mathbb{C}$ une fonction mesurable bornée, avec $\|\phi\|_{\infty}\leq 1$.
 - (a) Montrer que la fonction F_{ϕ} définie par $F_{\phi}(z) = \int_{0}^{2\pi} \phi(\theta) f(ze^{i\theta}) d\theta$ est holomorphe sur \mathbb{D} . (Développer f et série entière).
 - (b) En utilisant le principe du maximum, montrer que pour tout $r \in [0, 1[$ et pour tout $z \in D(0, r)$, on a $|F_{\phi}(z)| \leq I(r)$.
- (2) Montrer que pour tout $r \in [0, 1[$, il existe une fonction mesurable ϕ_r : $[0, 2\pi] \to \mathbb{C}$ telle que $|\phi_r(\theta)| = 1$ pour tout $\theta \in [0, 2\pi]$ et

$$I(r) = \int_0^{2\pi} \phi_r(\theta) f(re^{i\theta}) d\theta.$$

(3) Déduire des questions précédentes que I est une fonction croissante de r: si $0 \le r_1 < r_2 < 1$, alors $I(r_1) \le I(r_2)$.

Exercice 15. (méthode de Phragmén-Lindelöf)

On note U le demi-plan $\{\operatorname{Re}(z) > 0\}$. Soit $f : \overline{U} \to \mathbb{C}$ continue sur \overline{U} et holomorphe dans U. On suppose que f est bornée sur ∂U , et on pose $M = \sup\{|f(\xi)|; \xi \in \partial U\}$. On suppose de plus qu'il existe un nombre $\alpha \in [0,1[$ et une constante C tels que $|f(z)| \leq Ce^{|z|^{\alpha}}$ pour tout $z \in U$. Le but de l'exercice est de montrer qu'on a |f(z)| < M pour tout $z \in U$.

- (1) Pourquoi ne peut-on pas appliquer directement le principe du maximum?
- (2) Soit β vérifiant $\alpha < \beta < 1$. On définit z^{β} dans \overline{U} en prenant l'argument dans $]-\pi,\pi]$. Montrer qu'il existe une constante $\delta > 0$ telle que $\operatorname{Re}(z^{\beta}) \geq \delta |z|^{\beta}$ pour tout $z \in \overline{U}$.
- (3) Soit toujours β vérifiant $\alpha < \beta < 1$. Pour $\varepsilon > 0$, on définit $f_{\varepsilon} : \overline{U} \to \mathbb{C}$ par

$$f_{\varepsilon}(z) = e^{-\varepsilon z^{\beta}} f(z)$$
.

- (a) Montrer qu'on a $|f_{\varepsilon}(z)| \leq |f(z)|$ pour tout $z \in \overline{U}$, et déduire de (2) qu'on a aussi $\lim_{|z| \to \infty} f_{\varepsilon}(z) = 0$.
- (b) Montrer que si $z \in U$ et si R > |z|, alors $|f_{\varepsilon}(z)| \leq \max(M, M_{\varepsilon}(R))$, où $M_{\varepsilon}(R) = \sup\{|f_{\varepsilon}(\xi)|; \xi \in U \cap \partial D(0, R)\}.$
- (c) Déduire de (a) et (b) qu'on a $|f_{\varepsilon}(z)| \leq M$ pour tout $z \in U$.
- (4) Démontrer le résultat souhaité.

Exercice 16. Soit $f: \mathbb{D} \to \mathbb{C}$ une fonction holomorphe. On suppose qu'on a $\lim_{|z|\to 1} |f(z)| = +\infty$. En appliquant le principe du minimum local, montrer que f s'annule au moins une fois dans \mathbb{D} .

Exercice 17. (théorème de l'application ouverte)

Soit f une fonction holomorphe non constante sur un ouvert connexe $\Omega \subset \mathbb{C}$. Le but de l'exercice est de montrer que l'image par f de tout ouvert $V \subset \Omega$ est un ouvert de \mathbb{C} .

- (1) Soit V un ouvert de Ω et soit $a \in V$. On pose b = f(a).
 - (a) Justifier l'existence d'un disque ouvert D de centre a tel que $\overline{D} \subset V$ et $f(z) \neq b$ pour tout $z \in \overline{D} \setminus \{a\}$.
 - (b) On pose $\varepsilon = \inf\{|f(\xi) b|; \ \xi \in \partial D\}$. Pourquoi ε est-il *strictement* positif?
 - (c) Soit $w_0 \in D(b, \varepsilon/2)$. Montrer qu'on a $|f(a) w_0| < \varepsilon/2$ et $|f(\xi) w_0| \ge \varepsilon/2$ pour tout $\xi \in \partial D$.
- (2) On garde les notations de (1), et on pose $g(z) = f(z) w_0$. Montrer que |g| possède un minimum sur \overline{D} , et que ce minimum est atteint en un point $z_0 \in D$. Que peut-on en déduire sur la valeur de ce minimum?
- (3) Conclure.

Exercice 18. (forme invariante du lemme de Schwarz)

Soit f est une fonction holomorphe sur le disque unité \mathbb{D} et vérifiant $f(\mathbb{D}) \subset \mathbb{D}$.

- (1) Soit $b \in \mathbb{D}$. Avec les notations de l'exercice 13, calculer $\varphi_{f(b)} \circ f \circ \varphi_b(0)$.
- (2) Montrer que pour tous points $a, b \in \mathbb{D}$, on a l'inégalité

$$\left| \frac{f(b) - f(a)}{1 - \overline{f(b)}f(a)} \right| \le \left| \frac{b - a}{1 - \overline{b}a} \right|.$$

Exercice 19. Soit f une fonction holomorphe dans un disque D(0, r). On suppose qu'on a f(0) = 0, et qu'il existe une constante A > 0 telle que $Re(f(z)) \le A$ pour tout $z \in D(0, r)$.

- (1) Montrer que la fonction ϕ définie par $\phi(w) = \frac{f(rw)}{2A f(rw)}$ est bien définie et holomorphe sur le disque unité \mathbb{D} .
- (2) En utilisant le lemme de Schwarz, montrer qu'on a $|\phi(w)| \leq |w|$ pour tout $w \in \mathbb{D}$.
- (3) En déduire que pour tout $z \in D(0,r)$, on a $|f(z)| \leq 2A \frac{|z|}{r-|z|}$.

Exercice 20. (automorphismes de \mathbb{D})

Soit φ un **automorphisme** du disque unité \mathbb{D} , i.e. une bijection \mathbb{D} sur \mathbb{D} telle que φ et φ^{-1} sont holomorphes.

- (1) On suppose qu'on a $\varphi(0) = 0$. En appliquant le lemme de Schwarz à φ et φ^{-1} , montrer que φ est une rotation : $\varphi(z) = \lambda z$, où $|\lambda| = 1$.
- (2) On ne suppose plus que $\varphi(0) = 0$. Montrer que φ est de la forme $\varphi(z) = \lambda \varphi_a(z)$, où $|\lambda| = 1$ et $a \in \mathbb{D}$ (cf l'exercice 13).

Exercice 21. Déterminer les développements de Laurent des fonctions suivantes dans les domaines indiqués.

- (1) $f(z) = \frac{1}{1-z} + \frac{1}{3-z} \operatorname{dans} \{0 < |z-1| < 2\} \text{ et dans } \{0 < |z-3| < 2\}.$ (2) $g(z) = \frac{1}{(z-1)(z-2)} \operatorname{dans} \{|z| < 1\}, \operatorname{dans} \{1 < |z| < 2\} \text{ et dans } \{|z| > 2\}.$ (3) $h(z) = \frac{1}{1-z} e^{1/z} \operatorname{dans} \{|z| > 1\} \text{ et dans } \{0 < |z| < 1\}.$

Exercice 22. Soit r > 1, et soit f une fonction holomorphe dans la couronne $C_r = \{1/r < |z| < r\}.$

- (1) Montrer que la fonction $z \mapsto \overline{f(1/\bar{z})}$ est holomorphe sur C_r , et exprimer ses coefficients de Laurent en fonctions de ceux de f.
- (2) On suppose qu'on a $|f(\zeta)| \equiv 1$ sur le cercle $\{|\zeta| = 1\}$. Montrer que f ne s'annule pas sur C_r , et qu'on a $\overline{f}(z) \equiv \frac{1}{f(1/\overline{z})}$.

Exercice 23. Soit f une fonction entière vérifiant $\lim_{|z|\to\infty} |f(z)| = \infty$.

- (1) Pour $w \in \mathbb{C}^*$, on pose g(w) = f(1/w).
 - (a) Montrer qu'il existe r > 0 tel que 1/g(w) est bien défini pour $w \in$ $D(0,r)\setminus\{0\}$, puis montrer que 1/g se prolonge en une fonction φ holomorphe sur D(0,r) telle que $\varphi(0)=0$.
 - (b) Montrer qu'il existe un entier $m \geq 1$ et une fonction h holomorphe sur D(0,r) tels que $g(w) = \frac{1}{w^m} h(w)$ pour tout $w \in D(0,r) \setminus \{0\}$.
 - (c) On note d_n les coefficients de Laurent de g. Que peut-on dire de d_n pour n < -m?
- (2) Montrer que f est une fonction polynomiale.

Exercice 24. Soit f une fonction holomorphe sur \mathbb{C}^* et telle que |f(z)| = o(1/|z|)au voisinage de 0. Montrer que 0 est une singularité éliminable pour f.

Exercice 25. Soit Ω un ouvert connexe de \mathbb{C} , et soit S un fermé de Ω sans point d'accumulation dans Ω . Montrer que si u est une fonction holomorphe sur $\Omega \setminus S$ et si u admet une limite en chaque point $a \in S$, alors u se prolonge en une fonction holomorphe sur Ω .

Exercice 26. Soient f et g deux fonctions holomorphes non nulles sur un ouvert connexe $\Omega \subset \mathbb{C}$.

- (1) On suppose que tous les zéros de f sont également des zéros de q, avec multiplicité au moins égale. Montrer qu'il existe une fonction h holomorphe dans Ω telle que q = hf.
- (2) On suppose que $\Omega = \mathbb{C}$ et qu'on a $|g(z)| \leq |f(z)|$ pour tout $z \in \mathbb{C}$. Montrer qu'il existe une constante c telle que q = cf.